Afferents to the periaqueductal gray in the rat. A horseradish peroxidase study. 1983

J E Marchand, and N Hagino

Afferent projections to the periaqueductal gray matter in the rat have been studied by use of the retrograde axonal transport of horseradish peroxidase. Iontophoretic injections of horseradish peroxidase were made in dorsal, lateral and medial areas of the periaqueductal gray, primarily at intercollicular levels. The pattern of projections was similar in all of the injections restricted to the periaqueductal gray. Within the brainstem, numerous reticular formation nuclei were labeled, including nucleus reticularis lateralis, nucleus raphe magnus, pallidus and obscurus, the nucleus reticularis pontis oralis and caudalis, the paralemniscal nucleus and the dorsal and ventral parabrachial nuclei. At diencephalic levels, dense projections were seen from the parafascicular nucleus, dorsal premamillary nucleus, zona incerta, dorsomedial and ventromedial nuclei of the hypothalamus and the retrochiasmatic area, in the ventral portion of the anterior hypothalamus. At forebrain levels, occasional cells were seen in the medial preoptic area, lateral septum and the anterior cingulate cortex. Control injections of horseradish peroxidase into structures adjacent to the periaqueductal gray matter included three well localized deposits in the dorsal raphe. Retrogradely-labeled cells were found in lateral reticular nucleus of the medulla, nucleus raphe magnus, nucleus reticularis pontis caudalis, locus ceruleus, dorsal and ventral parabrachial nuclei, substantia nigra and the lateral hypothalamus. No labeled cells were found in the habenular nuclei. It is suggested that many of the descending hypothalamic and forebrain afferents may be relay centers for descending hippocampal formation efferents. Many of the periaqueductal gray afferent systems receive a direct projection from the hippocampal formation and could therefore coordinate influences from this limbic center with information on homeostatic mechanisms controlled by the hypothalamus. The numerous brainstem afferents to the periaqueductal gray could be involved in relay of ascending sensory information important for initiating any of several behavioral responses known to be controlled by the periaqueductal gray. In addition, certain raphe afferents might play a part in a feedback loop of the pain suppression circuit of which the periaqueductal gray is an important component.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D010487 Periaqueductal Gray Central gray matter surrounding the CEREBRAL AQUEDUCT in the MESENCEPHALON. Physiologically it is probably involved in RAGE reactions, the LORDOSIS REFLEX; FEEDING responses, bladder tonus, and pain. Mesencephalic Central Gray,Midbrain Central Gray,Central Gray Substance of Midbrain,Central Periaqueductal Gray,Griseum Centrale,Griseum Centrale Mesencephali,Periaqueductal Gray Matter,Substantia Grisea Centralis,Substantia Grisea Centralis Mesencephali,Central Gray, Mesencephalic,Central Gray, Midbrain,Gray Matter, Periaqueductal,Gray, Central Periaqueductal,Griseum Centrale Mesencephalus,Periaqueductal Grays, Central
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent

Related Publications

J E Marchand, and N Hagino
December 1982, Neuroscience letters,
J E Marchand, and N Hagino
December 1984, The Journal of comparative neurology,
J E Marchand, and N Hagino
June 1986, The Journal of comparative neurology,
Copied contents to your clipboard!