[The H+/e- ratio in the photosynthetic electron transport chain]. 1983

B N Ivanov, and V L Shmeleva, and V I Ovchinnikova

The number of protons adsorbed by tylakoids during one electron passage along the photosynthetic electron transport chain (i.e. the H+/e- ratio) was measured in isolated pea chloroplasts upon continuous illumination. Methylviologen was used as electron acceptor on the reducing side of PS I. It was found that at pH 6.0 upon illumination with red light (lambda greater than 620 nm) at an intensity of 2 . 10(5) erg/cm2 . s ("intensive" light) the H+/e- ratio is equal to 3. Upon illumination of dark-adapted chloroplasts with a "weak" light (900 erg/cm2 . s) the H+/e- ratio is equal to 2. Upon illumination of the chloroplasts with a "weak" after "intensive" light the value of this ratio is close to 3. Azide when added to the reaction mixture may interfere with the accuracy of measurements of the value of the H+/e- ratio by affecting proton exchange. Based on the changes in the H+/e- ratio induced by illumination it was assumed that at saturating intensity of the illuminating light the electron transport chain passes into a so-called "light" state when the mechanisms of proton-electron coupling differing from those of rare electron transfer ("weak" light, flashes) are triggered on. At pH 6.0 the "light" state of the electron transport chain is maintained for some time in the dark.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D003624 Darkness The absence of light. Darknesses
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

B N Ivanov, and V L Shmeleva, and V I Ovchinnikova
August 1999, Planta,
B N Ivanov, and V L Shmeleva, and V I Ovchinnikova
January 2001, Bioelectrochemistry (Amsterdam, Netherlands),
B N Ivanov, and V L Shmeleva, and V I Ovchinnikova
August 2023, Biochemistry. Biokhimiia,
B N Ivanov, and V L Shmeleva, and V I Ovchinnikova
December 1976, Journal of cellular physiology,
B N Ivanov, and V L Shmeleva, and V I Ovchinnikova
January 1965, Essays in biochemistry,
B N Ivanov, and V L Shmeleva, and V I Ovchinnikova
May 2018, Plant physiology,
B N Ivanov, and V L Shmeleva, and V I Ovchinnikova
December 1981, Journal of bioenergetics and biomembranes,
B N Ivanov, and V L Shmeleva, and V I Ovchinnikova
October 2008, Biochemistry. Biokhimiia,
B N Ivanov, and V L Shmeleva, and V I Ovchinnikova
March 1973, Biochemical and biophysical research communications,
B N Ivanov, and V L Shmeleva, and V I Ovchinnikova
January 2007, Biofizika,
Copied contents to your clipboard!