Damage to sensory hairs of inner hair cells after exposure to noise in rabbits without outer hair cells. 1983

E Borg, and B Engström

We investigated if the noise-induced damage to the stereocilia of inner hair cells (IHCs) was dependent on the integrity of the outer hair cells (OHCs) in rabbit. Prior to the noise exposure a total loss of OHCs in the basal 1.5 to 2 turns was induced by administration of kanamycin (400 mg/kg for 10 days). This left the IHCs apparently normal as observed in the scanning electron microscope. These animals exhibited a 20-60 dB hearing loss before noise exposure. In spite of this pronounced hearing loss, the fusion and inclination of the IHC stereocilia were extensive in these noise-exposed ears. The stereocilia damage occurred at the same noise exposure and was as prominent or even more pronounced than has been noted in ears exposed to noise only. Under the assumption that kanamycin causes selective destruction of OHCs, the results can be interpreted as evidence that the OHCs facilitate the IHCs at low sound levels without being involved in the process which damages IHC stereocilia at high levels of noise.

UI MeSH Term Description Entries
D007612 Kanamycin Antibiotic complex produced by Streptomyces kanamyceticus from Japanese soil. Comprises 3 components: kanamycin A, the major component, and kanamycins B and C, the minor components. Kanamycin A,Kanamycin Sulfate,Kantrex
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009925 Organ of Corti The spiral EPITHELIUM containing sensory AUDITORY HAIR CELLS and supporting cells in the cochlea. Organ of Corti, situated on the BASILAR MEMBRANE and overlaid by a gelatinous TECTORIAL MEMBRANE, converts sound-induced mechanical waves to neural impulses to the brain. Basilar Papilla,Corti's Organ,Spiral Organ,Corti Organ,Cortis Organ,Organ, Corti's,Organ, Spiral,Organs, Spiral,Papilla, Basilar,Spiral Organs
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D006199 Hair Cells, Auditory, Inner Auditory sensory cells of organ of Corti, usually placed in one row medially to the core of spongy bone (the modiolus). Inner hair cells are in fewer numbers than the OUTER AUDITORY HAIR CELLS, and their STEREOCILIA are approximately twice as thick as those of the outer hair cells. Auditory Hair Cell, Inner,Auditory Hair Cells, Inner,Cochlear Inner Hair Cell,Cochlear Inner Hair Cells,Hair Cell, Auditory, Inner,Inner Auditory Hair Cell,Inner Auditory Hair Cells,Inner Hair Cells,Cell, Inner Hair,Cells, Inner Hair,Hair Cell, Inner,Hair Cells, Inner,Inner Hair Cell
D006317 Hearing Loss, Noise-Induced Hearing loss due to exposure to explosive loud noise or chronic exposure to sound level greater than 85 dB. The hearing loss is often in the frequency range 4000-6000 hertz. Acoustic Trauma,Hearing Loss, Noise Induced,Noise-Induced Hearing Loss
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001309 Auditory Threshold The audibility limit of discriminating sound intensity and pitch. Auditory Thresholds,Threshold, Auditory,Thresholds, Auditory

Related Publications

E Borg, and B Engström
October 2012, Iranian Red Crescent medical journal,
E Borg, and B Engström
January 1999, Otolaryngologia polska = The Polish otolaryngology,
E Borg, and B Engström
November 1984, British journal of audiology,
E Borg, and B Engström
August 1995, Hearing research,
E Borg, and B Engström
January 2021, Frontiers in synaptic neuroscience,
E Borg, and B Engström
October 1969, The Journal of the Acoustical Society of America,
Copied contents to your clipboard!