Intracellular calcium concentration during hypoxia and metabolic inhibition in mammalian ventricular muscle. 1983

D G Allen, and C H Orchard

Papillary muscles from rats, cats and ferrets were microinjected with aequorin, a photoprotein which emits light as a function of Ca2+ concentration. The effects of hypoxia and different types of metabolic inhibition on intracellular Ca2+ concentration ([ Ca2+]i) and tension were studied. 2. Exposure of the muscle to hypoxia (PO2 less than 5 mmHg) or CN- caused a reversible decrease in developed tension, with no change in the magnitude of the Ca transient associated with each contraction. The rate of decline of the Ca transient was decreased slightly but significantly during these interventions. 3. In half the preparations examined, the initial fall in tension produced by hypoxia was interrupted by a short-lived increase in developed tension. No change in the Ca transient was associated with this increase in tension. 4. After exposure of papillary muscles to glucose-free Tyrode solution for short periods (less than 1 hr), hypoxia and CN- had a similar effect on the magnitude of the light transient and developed tension to section 2 above. After perfusion with glucose-free Tyrode solution for longer periods (greater than 2 hr), hypoxia and CN- caused a greater decrease in developed tension and a marked decrease in the magnitude of the Ca transient. 5. The addition of CN- to papillary muscles which were superfused with Tyrode solution containing 2-deoxyglucose instead of glucose, caused a rapid decrease in the magnitude of the Ca transient and of developed tension. These changes were not fully reversible. 6. In muscles which developed an hypoxic contracture, the resting [Ca2+]i did not rise by more than a factor of 1.4. 7. It is concluded that when glycolysis can proceed, inhibition of oxidative phosphorylation results in a decrease in developed tension with no change in the magnitude of the Ca transient. This decrease in the apparent sensitivity of the contractile proteins to Ca2+ is attributable to the decrease in intracellular pH known to occur in this situation. There may also be a second mechanism tending to reduce the Ca transient under these conditions. 8. During inhibition of glycolysis and oxidative phosphorylation, developed tension falls as a result of decreased Ca transients. This could be because the free energy of hydrolysis of ATP falls below the level required to pump Ca from the myoplasm to the sarcoplasmic reticulum.

UI MeSH Term Description Entries
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D005289 Ferrets Semidomesticated variety of European polecat much used for hunting RODENTS and/or RABBITS and as a laboratory animal. It is in the subfamily Mustelinae, family MUSTELIDAE. Domestic Polecat,Domestic Polecats,European Polecat,European Polecats,Ferret,Mustela putorius,Mustela putorius furo,Polecat, Domestic,Polecat, European,Polecats, Domestic,Polecats, European
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose

Related Publications

D G Allen, and C H Orchard
March 1992, The American journal of physiology,
D G Allen, and C H Orchard
January 1980, European heart journal,
D G Allen, and C H Orchard
September 1981, The American journal of physiology,
D G Allen, and C H Orchard
November 1986, Japanese heart journal,
D G Allen, and C H Orchard
January 1975, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!