In vitro labeling of proteins by reductive methylation: application to proteins involved in supramolecular structures. 1982

C S Heacock, and B W Bernstein, and A S Duhaiman, and D A Amorese, and J R Bamburg

Actin and tropomyosin, purified from both muscle and brain, and alpha-actinin, purified from muscle, have been labeled in vitro by reductive methylation to specific activities of greater than 10(5) dpm/micrograms protein. Actin so modified bound DNase I and polymerized identically to unmodified actin. Furthermore, the spectral properties of actin did not change after labeling. The interactions of labeled tropomyosin and alpha-actinin with F-actin were nearly identical to those of the unmodified proteins. These modified proteins comigrated with their unmodified counterparts in both SDS-containing polyacrylamide gels and isoelectric focusing gels. The labeled actin was quantitatively extracted from SDS-containing polyacrylamide gels (yield greater than 98% of radioactivity applied demonstrating that all of the radioactivity was protein bound. The reductive methylation procedure worked well at pH 8.0-8.5 in either pyrophosphate buffer or Bicine buffer using formaldehyde with [3H]-sodium borohydride as the reducing agent. The procedure could also be performed at pH 7.0 in phosphate buffer using (14C]-formaldehyde with sodium cyanoborohydride as the reducing agent. Proteins so labeled are ideal for use in quantitative experiments involving protein-protein interactions.

UI MeSH Term Description Entries
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D000185 Actinin A protein factor that regulates the length of R-actin. It is chemically similar, but immunochemically distinguishable from actin. alpha-Actinin,Eu-Actinin,beta-Actinin,Eu Actinin,alpha Actinin,beta Actinin
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C S Heacock, and B W Bernstein, and A S Duhaiman, and D A Amorese, and J R Bamburg
June 1979, The Journal of biological chemistry,
C S Heacock, and B W Bernstein, and A S Duhaiman, and D A Amorese, and J R Bamburg
November 1981, Analytical biochemistry,
C S Heacock, and B W Bernstein, and A S Duhaiman, and D A Amorese, and J R Bamburg
November 1974, Biochimica et biophysica acta,
C S Heacock, and B W Bernstein, and A S Duhaiman, and D A Amorese, and J R Bamburg
October 1982, Thrombosis and haemostasis,
C S Heacock, and B W Bernstein, and A S Duhaiman, and D A Amorese, and J R Bamburg
September 1980, The Journal of biological chemistry,
C S Heacock, and B W Bernstein, and A S Duhaiman, and D A Amorese, and J R Bamburg
August 2006, Chemical research in toxicology,
C S Heacock, and B W Bernstein, and A S Duhaiman, and D A Amorese, and J R Bamburg
April 1982, Bioscience reports,
C S Heacock, and B W Bernstein, and A S Duhaiman, and D A Amorese, and J R Bamburg
January 1983, Methods in enzymology,
C S Heacock, and B W Bernstein, and A S Duhaiman, and D A Amorese, and J R Bamburg
August 2007, Molecular microbiology,
Copied contents to your clipboard!