Sulfur-containing amino acid requirements of growing dogs. 1982

S E Blaza, and I H Burger, and D W Holme, and P T Kendall

Three experiments were undertaken to establish the total sulfur-containing amino acid requirement of growing dogs. In experiment 1, six Labradors failed to grow normally when fed a soy isolate diet of 0.28% methionine with 0.18% cystine but grow well when the food was supplemented to either 0.57% or 0.74% methionine. In the next experiment, 12 Labradors and 21 beagles were fed the soy isolate diet containing either 0.39%, 0.57% or 0.74% methionine in the presence of 0.15% cystine for 12 weeks. Dogs fed 0.39% methionine had significantly lower body weights, nitrogen retentions, food intakes and feed efficiencies than their littermates fed the two higher levels. This diet provided 468 kcal metabolizable energy (ME) per 100 g, therefore a level of 116 mg total sulfur-containing amino acids (TSAA)/100 kcal ME was not adequate for growth. The lowest level found to be adequate was 0.57% methionine, or 154 mg TSAA/100 kcal ME, which is similar to the requirement of other young omnivores. A final experiment with a free amino acid diet indicated that a level of 117 mg TSAA/100 kcal ME while inadequate for Labradors, may be sufficient for some beagles, highlighting differences between intact protein and free amino acid diets and suggesting possible breed differences.

UI MeSH Term Description Entries
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D009751 Nutritional Requirements The amounts of various substances in food needed by an organism to sustain healthy life. Dietary Requirements,Nutrition Requirements,Dietary Requirement,Nutrition Requirement,Nutritional Requirement,Requirement, Dietary,Requirement, Nutrition,Requirement, Nutritional,Requirements, Dietary,Requirements, Nutrition,Requirements, Nutritional
D003553 Cystine A covalently linked dimeric nonessential amino acid formed by the oxidation of CYSTEINE. Two molecules of cysteine are joined together by a disulfide bridge to form cystine. Copper Cystinate,L-Cystine,L Cystine
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D004063 Digestion The process of breakdown of food for metabolism and use by the body.
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000603 Amino Acids, Sulfur Sulfur Amino Acid,Sulfur Amino Acids,Acid, Sulfur Amino,Acids, Sulfur Amino,Amino Acid, Sulfur
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S E Blaza, and I H Burger, and D W Holme, and P T Kendall
December 1981, The Journal of nutrition,
S E Blaza, and I H Burger, and D W Holme, and P T Kendall
July 1990, Journal of animal science,
S E Blaza, and I H Burger, and D W Holme, and P T Kendall
July 1951, Nutrition reviews,
S E Blaza, and I H Burger, and D W Holme, and P T Kendall
May 1975, British poultry science,
S E Blaza, and I H Burger, and D W Holme, and P T Kendall
March 2012, Nutrition reviews,
S E Blaza, and I H Burger, and D W Holme, and P T Kendall
September 1972, British poultry science,
S E Blaza, and I H Burger, and D W Holme, and P T Kendall
September 1976, The Journal of nutrition,
S E Blaza, and I H Burger, and D W Holme, and P T Kendall
January 1997, Journal of animal science,
S E Blaza, and I H Burger, and D W Holme, and P T Kendall
March 1949, The Journal of nutrition,
Copied contents to your clipboard!