[Analysis of sister chromatid exchanges in the 1st, 2d and 3d mitoses using 5-bromodeoxyuridine and 5-bromodeoxycytidine]. 1982

A N Chebotarev, and T G Selezneva

The cultures of Chinese hamster cells were treated with different concentrations (2.5, 5.0, 10.0, 20.0, 80.0 and 160.0 microgram/ml) 5-BrdU and 5-BrdC during 12 hours. The cultures were fixed at the 24-th hour. The linear increase of sister chromatid exchanges (SCE) was discovered with the increase of BrdU concentration. No change of SCE frequency was observed at different BrdC concentrations. The reasons for these differences in a concentration effect are discussed.

UI MeSH Term Description Entries
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D001972 Bromodeoxycytidine 5-Bromo-2'-deoxycytidine. Can be incorporated into DNA in the presence of DNA polymerase, replacing dCTP. 5-Bromo-2'-Deoxycytidine,5 Bromo 2' Deoxycytidine
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D003434 Crossing Over, Genetic The reciprocal exchange of segments at corresponding positions along pairs of homologous CHROMOSOMES by symmetrical breakage and crosswise rejoining forming cross-over sites (HOLLIDAY JUNCTIONS) that are resolved during CHROMOSOME SEGREGATION. Crossing-over typically occurs during MEIOSIS but it may also occur in the absence of meiosis, for example, with bacterial chromosomes, organelle chromosomes, or somatic cell nuclear chromosomes. Crossing Over,Crossing-Over, Genetic,Crossing Overs,Genetic Crossing Over,Genetic Crossing-Over
D003841 Deoxycytidine A nucleoside component of DNA composed of CYTOSINE and DEOXYRIBOSE. Cytosine Deoxyribonucleoside,Cytosine Deoxyriboside,Deoxyribonucleoside, Cytosine,Deoxyriboside, Cytosine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

A N Chebotarev, and T G Selezneva
January 1980, Human genetics,
A N Chebotarev, and T G Selezneva
January 1977, Cytogenetics and cell genetics,
A N Chebotarev, and T G Selezneva
January 1976, Hereditas,
A N Chebotarev, and T G Selezneva
January 1984, Basic life sciences,
A N Chebotarev, and T G Selezneva
November 1982, Chemico-biological interactions,
A N Chebotarev, and T G Selezneva
May 2001, Current protocols in human genetics,
A N Chebotarev, and T G Selezneva
June 1980, Doklady Akademii nauk SSSR,
Copied contents to your clipboard!