Differential responses to inducers of delta-aminolaevulinate synthase and haem oxygenase during pregnancy. 1981

M K Sardana, and S Sassa, and A Kappas

The responses of hepatic delta-aminolaevulinate synthase and microsomal haem oxygenase to inducers were examined in pregnant rats. 2-Allyl-2-isopropylacetamide-mediated induction of delta-aminolaevulinate synthase was greatly decreased during pregnancy and in the early post-partum period. Administration of allylisopropylacetamide to pseudopregnant rats induced delta-aminolaevulinate synthase normally. Treatment of pregnant rats with cortisol failed to restore the drug-mediated induction of delta-aminolaevulinate synthase. Microsomal cytochrome P-450 content and the activities of drug-metabolizing enzymes such as aniline hydroxylase and ethylmorphine. N-demethylase were significantly lowered during pregnancy. In contrast with the greatly impaired induction of delta-aminolaevulinate synthase, the induction of haem oxygenase in response to CoCl2 remained unaltered in pregnant rats. The normal perturbations of delta-aminolaevulinate synthase, consisting of an initial inhibition followed by a rebound increase in the enzyme activity associated with CoCL2 treatment, were observed during pregnancy. These findings indicate that hormones and metabolic factors associated with gestation exert significant but differential controls on the induction patterns of delta-aminolaevulinate synthase and haem oxygenase.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011270 Pregnancy, Animal The process of bearing developing young (EMBRYOS or FETUSES) in utero in non-human mammals, beginning from FERTILIZATION to BIRTH. Animal Pregnancies,Animal Pregnancy,Pregnancies, Animal
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003035 Cobalt A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis. Cobalt-59,Cobalt 59
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005260 Female Females
D006419 Heme Oxygenase (Decyclizing) A mixed function oxidase enzyme which during hemoglobin catabolism catalyzes the degradation of heme to ferrous iron, carbon monoxide and biliverdin in the presence of molecular oxygen and reduced NADPH. The enzyme is induced by metals, particularly cobalt. Haem Oxygenase,Heme Oxygenase,Oxygenase, Haem,Oxygenase, Heme
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function

Related Publications

M K Sardana, and S Sassa, and A Kappas
October 1981, The Biochemical journal,
M K Sardana, and S Sassa, and A Kappas
December 1988, Biochemical pharmacology,
M K Sardana, and S Sassa, and A Kappas
November 1982, Biochemical and biophysical research communications,
M K Sardana, and S Sassa, and A Kappas
August 1976, The Biochemical journal,
M K Sardana, and S Sassa, and A Kappas
April 1993, The Biochemical journal,
Copied contents to your clipboard!