Isolation of two myosin light-chain kinases from bovine carotid artery and their regulation by phosphorylation mediated by cyclic AMP-dependent protein kinase. 1982

R C Bhalla, and R V Sharma, and R C Gupta

Myosin light-chain kinase was purifed from bovine carotid artery. Approx. 90% of myosin kinase was extracted in the supernatant fraction with buffer containing EDTA during myofibril preparation. The soluble fraction yielded two distinct peaks on DEAE-Sephacel chromatography. Peak I was eluted at a conductance of 11-12mmho and was completely dependent on Ca(2+)-calmodulin for its activity. Peak II was eluted at a conductance of 13-14mmho and showed approx. 15% Ca(2+)-independent activity. The myosin kinases I and II were further purified by affinity chromatography by using calmodulin coupled to Sepharose 4B, which resulted in 960-and 650-fold purification of type I and type II kinases respectively. Myosin kinase II activity was completely Ca(2+)-dependent after affinity chromatography on the calmodulin-Sepharose column. Myosin kinases I and II were phosphorylated by cyclic AMP-dependent protein kinase. In the presence of bound calmodulin 0.5-0.7mol of phosphate was incorporated/mol of myosin kinases I and II. On the other hand, in the absence of bound calmodulin 1-1.4mol of phosphate was incorporated/mol of kinases I and II. Phosphorylation in the absence of calmodulin significantly decreased the myosin kinase activity of both enzymes, and the decrease in myosin kinase activity was due to a 3-5-fold increase in the amount of calmodulin required for half-maximal stimulation of both type I and type II kinases. The regulation of myosin kinase activity by cyclic AMP-dependent phosphorylation would suggest that beta-adrenergic-mediated relaxation of vascular smooth muscle may be partly due to the direct interaction of cyclic AMP at the site of contractile proteins.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009219 Myosin-Light-Chain Kinase An enzyme that phosphorylates myosin light chains in the presence of ATP to yield myosin-light chain phosphate and ADP, and requires calcium and CALMODULIN. The 20-kDa light chain is phosphorylated more rapidly than any other acceptor, but light chains from other myosins and myosin itself can act as acceptors. The enzyme plays a central role in the regulation of smooth muscle contraction. Myosin Kinase,Myosin LCK,Myosin Regulatory Light-Chain Kinase,Kinase, Myosin,Kinase, Myosin-Light-Chain,LCK, Myosin,Myosin Light Chain Kinase,Myosin Regulatory Light Chain Kinase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R C Bhalla, and R V Sharma, and R C Gupta
January 1981, Advances in cyclic nucleotide research,
R C Bhalla, and R V Sharma, and R C Gupta
September 1985, Journal of molecular and cellular cardiology,
R C Bhalla, and R V Sharma, and R C Gupta
July 1977, Journal of molecular and cellular cardiology,
R C Bhalla, and R V Sharma, and R C Gupta
January 1980, Annual review of pharmacology and toxicology,
R C Bhalla, and R V Sharma, and R C Gupta
July 1989, Journal of cellular biochemistry,
Copied contents to your clipboard!