The purpose of this pulmonary gas exchange model is to study the effect produced by an inhomogeneous distribution of the ventilation-perfusion (V A/Q) and diffusion-perfusion (D/Q) ratios on the oxygen transfer. We calculate partial pressures of oxygen and carbon dioxide in venous blood, in capillary blood and alveolar gas of each element as the unique solution of a non-linear system, the parameters of which are the local values of ventilation, perfusion and diffusion. We show that an inhomogeneous distribution of any ratio leads to a decrease of the mixed arterial concentration of oxygen and that the greater the inhomogeneity, the greater the decrease. We show by numerical stimulation that if two inhomogeneities (V A/Q) and (D/Q) are associated, the oxygen arterial concentration decrease is rather less important if the diffusion-ventilation ratio has a distribution almost homogeneous, i.e. if the V A/Q and D/Q inhomogeneities are almost identical.