Membrane phospholipid composition of Caulobacter crescentus. 1978

I Contreras, and L Shapiro, and S Henry

The phospholipid composition of Caulobacter crescentus CB13 and CB15 was determined. The acidic phospholipids, phosphatidylglycerol and cardiolipin, comprise approximately 87% of the total phospholipids. Neither phosphatidylethanolamine nor its precursor phosphatidylserine was detected. The outer and inner membranes of C. crescentus CB13 were separated, and phospholipid analysis revealed heterogeneity with respect to the relative amounts of phosphatidylglycerol and cardiolipin in the two membranes. As has been shown to be the case for other bacterial membranes, the concentration of cardiolipin increases and phosphatidylglycerol decreases as cell cultures enter stationary phase.

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D010715 Phosphatidylglycerols A nitrogen-free class of lipids present in animal and particularly plant tissues and composed of one mole of glycerol and 1 or 2 moles of phosphatidic acid. Members of this group differ from one another in the nature of the fatty acids released on hydrolysis. Glycerol Phosphoglycerides,Monophosphatidylglycerols,Phosphatidylglycerol,Phosphatidyl Glycerol,Glycerol, Phosphatidyl,Phosphoglycerides, Glycerol
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002308 Cardiolipins Acidic phospholipids composed of two molecules of phosphatidic acid covalently linked to a molecule of glycerol. They occur primarily in mitochondrial inner membranes and in bacterial plasma membranes. They are the main antigenic components of the Wassermann-type antigen that is used in nontreponemal SYPHILIS SERODIAGNOSIS. Cardiolipin,Diphosphatidylglycerol,Diphosphatidylglycerols
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria

Related Publications

I Contreras, and L Shapiro, and S Henry
January 1980, Journal of bacteriology,
I Contreras, and L Shapiro, and S Henry
September 2019, Journal of bacteriology,
I Contreras, and L Shapiro, and S Henry
December 1976, Journal of biochemistry,
I Contreras, and L Shapiro, and S Henry
July 2012, Current biology : CB,
I Contreras, and L Shapiro, and S Henry
March 1981, Journal of bacteriology,
I Contreras, and L Shapiro, and S Henry
February 1978, Journal of bacteriology,
I Contreras, and L Shapiro, and S Henry
October 1990, Journal of bacteriology,
I Contreras, and L Shapiro, and S Henry
January 1991, Methods in enzymology,
I Contreras, and L Shapiro, and S Henry
January 1992, Acta microbiologica Polonica,
Copied contents to your clipboard!