Sympathetic hyperactivity during hypothalamic stimulation in spontaneously hypertensive rats. 1978

K Takeda, and R D Buñag

To determine whether sympathetic hyperactivity of hypothalamic origin contributes to keep blood pressures high in spontaneous hypertension, aortic pressures and sympathetic nerve spike potentials were recorded during electrical stimulation of the posterior hypothalamus in urethane-anesthetized normotensive or hypertensive rats. Basal sympathetic nerve activity was higher in spontaneously hypertensive rats than in either normotensive or deoxycorticosterone acetate-salt hypertensive ones even before stimulation began. Blood pressure elevations produced by hypothalamic stimulation were always preceded by substantial increases in amplitude and rate of neural firing. Changes in amplitude could not be quantified, but rates of neural firing accelerated much more in spontaneous hypertensives than in normotensives during stimulation with 50- and 100-muA currents. Similar differences between deoxycorticosterone acetate-salt hypertensives and either normotensives or spontaneous hypertensives were not statistically significant. Nerve activity invariably became quiescent immediately after hypothalamic stimulation was discontinued, and recovery from this poststimulatory inhibition was faster in spontaneously hypertensive than in normotensive rats. Although spontaneous hypertensives generally also had stronger pressor responses to various sympathomimetic stimuli, responses to hypothalamic stimulation were enhanced to a greater extent than those to either norepinephrine or sympathetic nerve stimulation. Because this selectivity indicates participation of mechanisms other than augmented cardiovascular reactivity, further enhancement of responsiveness to hypothalamic stimuli was attributed to the associated increase in sympathetic nerve firing. These results are in accord with the hypothesis that the blood pressure elevation in rats with established spontaneous hypertension is a result, at least in part, of sympathetic hyperactivity emanating from the posterior hypothalamus.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007034 Hypothalamus, Posterior The part of the hypothalamus posterior to the middle region consisting of several nuclei including the medial maxillary nucleus, lateral mammillary nucleus, and posterior hypothalamic nucleus (posterior hypothalamic area). The posterior hypothalamic area is concerned with control of sympathetic responses and is sensitive to conditions of decreasing temperature and controls the mechanisms for the conservation and increased production of heat. Hypothalamic Region, Posterior,Posterior Hypothalamic Region,Area Hypothalamica Posterior,Hypothalamus Posterior,Mammillary Region,Posterior Hypothalamus,Posterior Periventricular Nucleus,Premammillary Nucleus,Supramammillary Commissure,Supramammillary Nucleus,Area Hypothalamica Posteriors,Commissure, Supramammillary,Commissures, Supramammillary,Hypothalamic Regions, Posterior,Hypothalamica Posterior, Area,Hypothalamica Posteriors, Area,Hypothalamus Posteriors,Mammillary Regions,Nucleus, Posterior Periventricular,Nucleus, Premammillary,Nucleus, Supramammillary,Periventricular Nucleus, Posterior,Posterior Hypothalamic Regions,Posterior, Area Hypothalamica,Posterior, Hypothalamus,Posteriors, Area Hypothalamica,Posteriors, Hypothalamus,Region, Mammillary,Region, Posterior Hypothalamic,Regions, Mammillary,Regions, Posterior Hypothalamic,Supramammillary Commissures
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013268 Stimulation, Chemical The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Stimulation,Chemical Stimulations,Stimulations, Chemical

Related Publications

K Takeda, and R D Buñag
October 1986, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
K Takeda, and R D Buñag
December 1989, Hypertension (Dallas, Tex. : 1979),
K Takeda, and R D Buñag
July 1979, The American journal of physiology,
K Takeda, and R D Buñag
October 1978, European journal of pharmacology,
K Takeda, and R D Buñag
February 1997, Canadian journal of physiology and pharmacology,
K Takeda, and R D Buñag
February 2016, Autonomic neuroscience : basic & clinical,
K Takeda, and R D Buñag
July 1973, Japanese heart journal,
Copied contents to your clipboard!