Functional acetylcholine receptor from Torpedo marmorata in planar membranes. 1980

H Schindler, and U Quast

Planar bilayer membranes containing functional acetylcholine receptor were formed from vesicles of Torpedo marmorata electric organ without extracting the acetylcholine receptor from its native environment. Native vesicles were transformed into monolayers which subsequently were apposed into planar bilayers. In the absence of agonists the membrane conductance was similar to that of lipid bilayers. Addition of carbamoylcholine or succinylcholine caused increased membrane conductance and this could be competitively inhibited by d-tubocurarine and suppressed by alpha-bungarotoxin. The amplitude of the conductance response was proportional to the number of alpha-bungarotoxin binding sites in the bilayers. Asymmetric membranes could be formed with the ligand binding sites on only one membrane surface. Desensitization of acetylcholine receptor was evident from equilibrium and kinetic data of the carbamoylcholine-activated conductance. Carbamoylcholine-induced membrane permeability was about 7 times higher for K+ and Na+ ions than for Cl-. At low levels of conductance, single-channel fluctuations of 20-25 pS in conductance and 1.3-msec lifetime were resolved in physiological saline containing carbamoylcholine. The ratio of observed channels to alpha-bungarotoxin sites present showed that a significant fraction of acetylcholine receptor in the membrane was functional. The quantitative aspects of the cation channel, the desensitization, and the ligand binding properties were in close agreement with established values. This transformation of natural acetylcholine receptor vesicles to planar bilayers conserves the essential properties of the in vivo receptor.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002414 Cations, Monovalent Positively charged atoms, radicals or group of atoms with a valence of plus 1, which travel to the cathode or negative pole during electrolysis. Monovalent Cation,Cation, Monovalent,Monovalent Cations
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.

Related Publications

H Schindler, and U Quast
September 1978, Proceedings of the National Academy of Sciences of the United States of America,
H Schindler, and U Quast
January 1984, Journal of receptor research,
H Schindler, and U Quast
January 1984, Advances in experimental medicine and biology,
H Schindler, and U Quast
December 1974, Archives of biochemistry and biophysics,
H Schindler, and U Quast
January 1983, Cold Spring Harbor symposia on quantitative biology,
Copied contents to your clipboard!