Cultured mouse embryos metabolize benzo[a]pyrene during early gestation: genetic differences detectable by sister chromatid exchange. 1980

S M Galloway, and P E Perry, and J Meneses, and D W Nebert, and R A Pedersen

Mouse embryos explanted at 7 1/2 or 8 1/2 days of gestation were cultured in medium containing benzo[a]pyrene and supplemented with 5-bromodeoxyuridine to allow detection of sister chromatid exchanges. The murine Ah locus regulates the inducible metabolism of polycyclic hydrocarbons such as benzo[a]pyrene. A high frequency of sister chromatid exchange was induced by benzo[a]pyrene in embryos from three Ah-"responsive" inbred strains (BALB/cDub, C3H/AnfCum, and C57BL/6N); there was little or no increase in two Ah-"nonresponsive" inbred strains (AKR/J and DBA/2J). Benzo[a]pyrene also induced sister chromatid exchanges in the Ah-responsive recombinant inbred line B6NXAKN-12 but not in the Ah-nonresponsive recombinant inbred line B6NXAKN-3. Sister chromatid exchange in cultured Ah-responsive mouse embryos was thus shown to be a sensitive assay. These data provide direct evidence that genetically responsive mouse embryos (early postimplantation stage) possess the subcellular processes necessary for induction of enzymes that metabolize benzo[a]pyrene to its chemically active forms(s). Both the Ah regulatory gene product (a cytoslic receptor) and the structural gene product (inducible cytochrome P1-450) therefore appear to be functional at an early embryonic age. Furthermore, this metabolic capacity may play an important role in the damage to embryonic cells by polycyclic hydracarbons.

UI MeSH Term Description Entries
D008297 Male Males
D008431 Maternal-Fetal Exchange Exchange of substances between the maternal blood and the fetal blood at the PLACENTA via PLACENTAL CIRCULATION. The placental barrier excludes microbial or viral transmission. Transplacental Exposure,Exchange, Maternal-Fetal,Exposure, Transplacental,Maternal Fetal Exchange
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005260 Female Females

Related Publications

S M Galloway, and P E Perry, and J Meneses, and D W Nebert, and R A Pedersen
November 1980, Nature,
S M Galloway, and P E Perry, and J Meneses, and D W Nebert, and R A Pedersen
July 1983, Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine],
S M Galloway, and P E Perry, and J Meneses, and D W Nebert, and R A Pedersen
December 1985, Experientia,
S M Galloway, and P E Perry, and J Meneses, and D W Nebert, and R A Pedersen
January 1985, Mutation research,
S M Galloway, and P E Perry, and J Meneses, and D W Nebert, and R A Pedersen
January 1985, Mutation research,
S M Galloway, and P E Perry, and J Meneses, and D W Nebert, and R A Pedersen
June 1994, Molecular reproduction and development,
S M Galloway, and P E Perry, and J Meneses, and D W Nebert, and R A Pedersen
September 1980, Biochimica et biophysica acta,
S M Galloway, and P E Perry, and J Meneses, and D W Nebert, and R A Pedersen
November 1982, Mutation research,
S M Galloway, and P E Perry, and J Meneses, and D W Nebert, and R A Pedersen
January 1984, Basic life sciences,
Copied contents to your clipboard!