Properties of the separated catalytic and regulatory units of brain adenylate cyclase. 1980

S Strittmatter, and E J Neer

Adenylate cyclase from bovine brain cortex was solubilized with 14 mM cholate and 1 M (NH4)2SO4. Gel filtration over a column of Sepharose 6B separated the catalytic unit (CU) from a factor (G/F) that confers responsiveness to 5'-guanylyl imidophosphate (p[NH]ppG) or fluoride. The separated CU, which elutes with a Kav, of 0.48 +/- 0.01 (n=5), is not responsive to p[NH]ppG or fluoride and is relatively inactive when Mg . ATP is the substrate but activated 8-15-fold by Mn2+. The separated G/F elutes with a Kav of 0.70 +/- 0.02 (n=4). It restores the responsiveness of the CU to p[NH]ppG and fluoride. Activation of the enzyme by p[NH]ppG before solubilization does not decrease the amount of G/F eluting with a Kav of 0.7. Therefore, the G/F is probably present in brain cortex in excess over the CU. p[NH]ppG stabilizes the G/F but not the CU against thermal inactivation, suggesting that it interacts with G/F and not with CU. Incubation of the G/F with p[NH]ppG before addition of CU markedly increases the rate of activation of the reconstituted enzyme by p[NH]ppG. We propose, therefore, that the rate-limiting step in adenylate cyclase activation is a process in G/F alone and not a slow conformational change in CU or a slow association of G/F with CU. Binding of p[NH]ppG to the isolated G/F appears to be readily reversible; the ability of fully activated G/F to stimulate CU can be blocked if GDP is added before CU. In contrast, after the CU has been activated by interaction with G/F, GDP cannot reverse the activation. This suggests that association with the CU increases the affinity of G/F for p[NH]ppG.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002793 Cholic Acids The 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholanic acid family of bile acids in man, usually conjugated with glycine or taurine. They act as detergents to solubilize fats for intestinal absorption, are reabsorbed by the small intestine, and are used as cholagogues and choleretics. Cholalic Acids,Acids, Cholalic,Acids, Cholic
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006150 Guanine Nucleotides Guanine Nucleotide,Guanosine Phosphates,Nucleotide, Guanine,Nucleotides, Guanine,Phosphates, Guanosine
D006165 Guanylyl Imidodiphosphate A non-hydrolyzable analog of GTP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It binds tightly to G-protein in the presence of Mg2+. The nucleotide is a potent stimulator of ADENYLYL CYCLASES. GMP-PNP,GMP-P(NH)P,Gpp(NH)p,Guanosine 5'-(Beta,Gamma-Imido)Triphosphate,Guanyl-5'-Imidodiphosphate,P(NH)PPG,Guanyl 5' Imidodiphosphate,Imidodiphosphate, Guanylyl
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D000645 Ammonium Sulfate Sulfuric acid diammonium salt. It is used in CHEMICAL FRACTIONATION of proteins. Sulfate, Ammonium

Related Publications

S Strittmatter, and E J Neer
January 1983, Journal of cyclic nucleotide and protein phosphorylation research,
S Strittmatter, and E J Neer
January 2002, Zhurnal evoliutsionnoi biokhimii i fiziologii,
S Strittmatter, and E J Neer
November 1981, The Journal of biological chemistry,
S Strittmatter, and E J Neer
November 1984, The Journal of biological chemistry,
S Strittmatter, and E J Neer
April 1980, The Journal of biological chemistry,
S Strittmatter, and E J Neer
February 1981, The Journal of biological chemistry,
S Strittmatter, and E J Neer
September 1982, The Journal of biological chemistry,
S Strittmatter, and E J Neer
February 1985, Journal of molecular and cellular cardiology,
S Strittmatter, and E J Neer
February 1983, The Journal of biological chemistry,
S Strittmatter, and E J Neer
October 1981, The Journal of biological chemistry,
Copied contents to your clipboard!