Spontaneous parthenogenesis in Mus musculus: comparison of protein synthesis in parthenogenetic and normal preimplantation embryos. 1980

U Petzoldt, and P C Hoppe

In preimplantation stages of normal and spontaneously activated parthenogenetic embryos of the LT/Sv mouse strain, protein synthesis was analyzed by using two-dimensional polyacrylamide gel electrophoresis. Fertilization and parthenogenetic activation cause similar changes polypeptide synthesis when compared with those of unfertilized eggs. The overt developmental delay of early parthenotes, which is probably due to an initial retarded activation in comparison with normal fertilization, is documented molecularly by a similar delay in their protein synthesis pattern. These differences are clearly visible at the two-cell stage but gradually disappear during further cleavage. The basic protein patterns of normal and parthenogenetic embryos are remarkably similar up to the blastocyst stage. However, quantitative differences occur in all preimplantation embryos analyzed and become more distinct at the blastocyst stage. In addition, only minor qualitative changes appear during late preimplantation. These alterations in protein synthesis may reflect at the molecular level early events in abnormal development of parthenotes. Our biochemical results are discussed in context with biological experiments rescuing parthenogenetic LT/Sv embryos by chimera formation.

UI MeSH Term Description Entries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D010312 Parthenogenesis A unisexual reproduction without the fusion of a male and a female gamete (FERTILIZATION). In parthenogenesis, an individual is formed from an unfertilized OVUM that did not complete MEIOSIS. Parthenogenesis occurs in nature and can be artificially induced. Arrhenotoky,Automixis,Thelytoky,Parthenogeneses
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D004171 Diploidy The chromosomal constitution of cells, in which each type of CHROMOSOME is represented twice. Symbol: 2N or 2X. Diploid,Diploid Cell,Cell, Diploid,Cells, Diploid,Diploid Cells,Diploidies,Diploids
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

U Petzoldt, and P C Hoppe
June 2004, Biology of reproduction,
U Petzoldt, and P C Hoppe
February 1994, Zygote (Cambridge, England),
U Petzoldt, and P C Hoppe
December 1995, Molecular endocrinology (Baltimore, Md.),
U Petzoldt, and P C Hoppe
October 1990, Experientia,
U Petzoldt, and P C Hoppe
February 1976, Journal of embryology and experimental morphology,
U Petzoldt, and P C Hoppe
February 2019, The Journal of reproduction and development,
U Petzoldt, and P C Hoppe
July 2001, Developmental biology,
U Petzoldt, and P C Hoppe
October 1981, Laboratory animal science,
Copied contents to your clipboard!