Hepatic calcium efflux during cytochrome P-450-dependent drug oxidations at the endoplasmic reticulum in intact liver. 1981

H Sies, and P Graf, and J M Estrela

During metabolism of (type I) drugs by cytochrome P-450-dependent monooxygenase of the endoplasmic reticulum, the NADPH/NADP+ ratio in rat liver selectively decreases to approximately one-half of the control values, whereas the NADH/NAD+ ratio remains practically unaffected [Sies, H. & Brauser, B. (1970) Eur. J. Biochem. 15, 521-540]. In view of the observations with isolated mitochondria [Lehninger, A. L., Vercesi, A. & Bababunmi, E. A. (1978) Proc. Natl. Acad. Sci. USA 75, 1690-1694] of stimulated Ca2+ efflux upon nicotinamide nucleotide oxidation, the selective oxidation of NADPH in cytosol and mitochondria during drug oxidations was considered a useful experimental tool for the determination of whether the oxidation of NADPH or of NADH is responsible for Ca2+ efflux. With perfused livers from phenobarbital-treated rats, Ca2+ efflux was demonstrated, amounting to 8 nmol/min per gram of liver (wet weight), with aminopyrine, ethylmorphine, or hexobarbital as drug substrates. Drug-associated Ca2+ release was diminished when the inhibitor metyrapone was also present, or when drug oxidation was suppressed during N2 anoxia or in the presence of antimycin A in livers from fasted rats. Ca2+ efflux was elicited also by infusion of the thiol oxidant diamide, and by t-butyl hydroperoxide. However whereas Ca2+ efflux elicited by these compounds was restricted upon addition of the thiol dithioerythritol, there was little, if any, sensitivity of the drug-associated Ca2+ efflux to the thiol. Further mitochondrial oxidation of NADPH by addition of ammonium chloride had no effect on drug-associated Ca2+ efflux. Prior addition of the alpha-agonist phenylephrine suppressed the Ca2+ release by drug addition. While the molecular mechanism involved in Ca2+ efflux from liver mitochondria and from hepatocytes as well as the regulatory significance are not yet known, it is concluded from the present experiments that in case of nicotinamide nucleotide-linked Ca2+ efflux the oxidation of NADPH may suffice, with oxidation of NADH not being a requirement.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010656 Phenylephrine An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent. (R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol,Metaoxedrin,Metasympatol,Mezaton,Neo-Synephrine,Neosynephrine,Phenylephrine Hydrochloride,Phenylephrine Tannate,Neo Synephrine,Tannate, Phenylephrine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols

Related Publications

H Sies, and P Graf, and J M Estrela
February 1981, Biokhimiia (Moscow, Russia),
H Sies, and P Graf, and J M Estrela
January 1973, Drug metabolism and disposition: the biological fate of chemicals,
H Sies, and P Graf, and J M Estrela
February 1976, Clinical pharmacology and therapeutics,
H Sies, and P Graf, and J M Estrela
January 1993, Sub-cellular biochemistry,
H Sies, and P Graf, and J M Estrela
February 1987, Biochemical pharmacology,
H Sies, and P Graf, and J M Estrela
February 1980, Proceedings of the National Academy of Sciences of the United States of America,
H Sies, and P Graf, and J M Estrela
January 1996, Clinics in dermatology,
H Sies, and P Graf, and J M Estrela
January 1981, Essays in biochemistry,
Copied contents to your clipboard!