Immunocytochemical localization of aspartate aminotransferase immunoreactivity in cochlear nucleus of the guinea pig. 1981

R A Altschuler, and G R Neises, and G G Harmison, and R J Wenthold, and J Fex

There is substantial evidence supporting the role of aspartate or glutamate as the neurotransmitter of the auditory nerve. The concentration of aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1), an enzyme associated with the metabolism of these amino acids, is high in axons and terminals of the auditory nerve. Antibodies were raised against aspartate aminotransferase and used in immunocytochemical studies to determine its localization in the cochlear nucleus of the guinea pig. Indirect immunofluorescence techniques were used for light microscopic localization of aspartate aminotransferase-like immunoreactivity in normal guinea pigs and guinea pigs with auditory nerve lesions. Fluorescent rings of aspartate aminotransferase-like immunoreactivity were seen around spherical cells in the anteroventral cochlear nucleus. In animals with auditory nerve lesions, rings were no longer seen in the ipsilateral cochlear nucleus. Immunoreactivity was also seen on cells in the posteroventral cochlear nucleus and in auditory nerve fibers. Ultrastructural studies were done in the rostral anteroventral cochlear nucleus, using the peroxidase-antiperoxidase technique. Aspartate aminotransferase-like immunoreactivity was seen at axosomatic synapses on large spherical cells in terminals with the morphological characteristics of auditory nerve terminals. Other classes of terminals on the soma of large spherical cells showed no immunoreactivity. It was concluded that aspartate aminotransferase-like immunoreactivity is present in axons and terminals of the auditory nerve. These findings indicate that aspartate aminotransferase-like immunoreactivity may serve as a marker at terminals where aspartate or glutamate is a neurotransmitter.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D003056 Cochlear Nerve The cochlear part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The cochlear nerve fibers originate from neurons of the SPIRAL GANGLION and project peripherally to cochlear hair cells and centrally to the cochlear nuclei (COCHLEAR NUCLEUS) of the BRAIN STEM. They mediate the sense of hearing. Acoustic Nerve,Auditory Nerve,Acoustic Nerves,Auditory Nerves,Cochlear Nerves,Nerve, Acoustic,Nerve, Auditory,Nerve, Cochlear,Nerves, Acoustic,Nerves, Auditory,Nerves, Cochlear
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001219 Aspartate Aminotransferases Enzymes of the transferase class that catalyze the conversion of L-aspartate and 2-ketoglutarate to oxaloacetate and L-glutamate. EC 2.6.1.1. Aspartate Aminotransferase,Aspartate Transaminase,Glutamic-Oxaloacetic Transaminase,SGOT,Aspartate Apoaminotransferase,Glutamate-Aspartate Transaminase,L-Aspartate-2-Oxoglutarate Aminotransferase,Serum Glutamic-Oxaloacetic Transaminase,Aminotransferase, Aspartate,Aminotransferase, L-Aspartate-2-Oxoglutarate,Aminotransferases, Aspartate,Apoaminotransferase, Aspartate,Glutamate Aspartate Transaminase,Glutamic Oxaloacetic Transaminase,Glutamic-Oxaloacetic Transaminase, Serum,L Aspartate 2 Oxoglutarate Aminotransferase,Serum Glutamic Oxaloacetic Transaminase,Transaminase, Aspartate,Transaminase, Glutamate-Aspartate,Transaminase, Glutamic-Oxaloacetic,Transaminase, Serum Glutamic-Oxaloacetic

Related Publications

R A Altschuler, and G R Neises, and G G Harmison, and R J Wenthold, and J Fex
July 1982, Hearing research,
R A Altschuler, and G R Neises, and G G Harmison, and R J Wenthold, and J Fex
August 1986, Brain research,
R A Altschuler, and G R Neises, and G G Harmison, and R J Wenthold, and J Fex
March 1985, The Journal of comparative neurology,
R A Altschuler, and G R Neises, and G G Harmison, and R J Wenthold, and J Fex
November 1989, Hearing research,
R A Altschuler, and G R Neises, and G G Harmison, and R J Wenthold, and J Fex
March 1985, Brain research,
R A Altschuler, and G R Neises, and G G Harmison, and R J Wenthold, and J Fex
December 1989, Brain research,
R A Altschuler, and G R Neises, and G G Harmison, and R J Wenthold, and J Fex
August 1982, Nature,
R A Altschuler, and G R Neises, and G G Harmison, and R J Wenthold, and J Fex
July 1985, Brain research,
R A Altschuler, and G R Neises, and G G Harmison, and R J Wenthold, and J Fex
October 1988, The Journal of comparative neurology,
R A Altschuler, and G R Neises, and G G Harmison, and R J Wenthold, and J Fex
April 1982, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!