Molybdenum hydroxylases in Drosophila. II. Molybdenum cofactor in xanthine dehydrogenase, aldehyde oxidase and pyridoxal oxidase. 1981

C K Warner, and V Finnerty

The molybdenum hydroxylases are a ubiquitous class of enzymes which contain molybdenum in association with a low molecular weight cofactor. Genetic evidence suggests that the Drosophila loci, ma--1, cin and lxd are concerned with this cofactor because mutants for any one of these loci simultaneously interrupt activity for two molybdenum hydroxylases, XDH and A0. A third enzyme activity, P0, is also absent in each of the three mutants but evidence classifying P0 as a molybdoenzyme has been lacking. This study utilizes the known tungsten sensitivity of molybdoenzymes to demonstrate directly that pyridoxal oxidase is also molybdoenzyme. The low molecular weight molybdenum cofactor is found to be severely reduced in extracts of the 1xd and cin mutants but ma--1 mutants have high levels of cofactor. A partially purified preparation of XDH crossreacting material from ma--1 was also shown to contain the molybdenum cofactor. These results, considered with data from other workers are taken to indicate that the functions of all three of the loci examined could be concerned with some aspect of cofactor biosynthesis.

UI MeSH Term Description Entries
D008667 Metalloproteins Proteins that have one or more tightly bound metal ions forming part of their structure. (Dorland, 28th ed) Metalloprotein
D008982 Molybdenum A metallic element with the atomic symbol Mo, atomic number 42, and atomic weight 95.95. It is an essential trace element, being a component of the enzymes xanthine oxidase, aldehyde oxidase, and nitrate reductase. Molybdenum-98,Molybdenum 98
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011621 Pteridines Compounds based on pyrazino[2,3-d]pyrimidine which is a pyrimidine fused to a pyrazine, containing four NITROGEN atoms. 1,3,5,8-Tetraazanaphthalene,Pteridine,Pteridinone,Pyrazino(2,3-d)pyrimidine,Pyrazinopyrimidine,Pyrazinopyrimidines,Pyrimido(4,5-b)pyrazine,Pteridinones
D011734 Pyridoxaminephosphate Oxidase An enzyme catalyzing the deamination of pyridoxaminephosphate to pyridoxal phosphate. It is a flavoprotein that also oxidizes pyridoxine-5-phosphate and pyridoxine. EC 1.4.3.5. Pyridoxinephosphate Oxidase,Pyridoxine-5-Phosphate Oxidase,Oxidase, Pyridoxaminephosphate,Oxidase, Pyridoxine-5-Phosphate,Oxidase, Pyridoxinephosphate,Pyridoxine 5 Phosphate Oxidase
D003067 Coenzymes Small molecules that are required for the catalytic function of ENZYMES. Many VITAMINS are coenzymes. Coenzyme,Enzyme Cofactor,Cofactors, Enzyme,Enzyme Cofactors,Cofactor, Enzyme
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D000090006 Molybdenum Cofactors Enzyme co-factors that contain MOLYBDENUM. They play an essential role in a variety of cellular REDOX reactions. Molybdenum-Containing Cofactors,Pterin-based Molybdenum Cofactor,Pterin-based Molybdenum Cofactors,Cofactor, Pterin-based Molybdenum,Cofactors, Molybdenum,Cofactors, Molybdenum-Containing,Cofactors, Pterin-based Molybdenum,Molybdenum Cofactor, Pterin-based,Molybdenum Cofactors, Pterin-based,Molybdenum Containing Cofactors,Pterin based Molybdenum Cofactor,Pterin based Molybdenum Cofactors
D000445 Aldehyde Oxidoreductases Oxidoreductases that are specific for ALDEHYDES. Aldehyde Oxidoreductase,Oxidoreductase, Aldehyde,Oxidoreductases, Aldehyde
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C K Warner, and V Finnerty
January 1987, European journal of drug metabolism and pharmacokinetics,
C K Warner, and V Finnerty
December 1996, Nihon rinsho. Japanese journal of clinical medicine,
C K Warner, and V Finnerty
April 1979, Molecular & general genetics : MGG,
C K Warner, and V Finnerty
August 1996, Biochemical and molecular medicine,
C K Warner, and V Finnerty
January 1984, Comparative biochemistry and physiology. B, Comparative biochemistry,
Copied contents to your clipboard!