Induction of androgen receptor formation by epithelium-mesenchyme interaction in embryonic mouse mammary gland. 1982

B Heuberger, and I Fitzka, and G Wasner, and K Kratochwil

The role of tissue interaction in the development of hormone responsiveness was studied in the embryonic mammary gland of the mouse, which becomes sensitive to testosterone on day 14. Previously, the mesenchyme had been identified as the sole target tissue for the hormone, although it was also demonstrated that its response to testosterone required the presence of mammary epithelium. Using autoradiography, we now show that [3H]testosterone or [3H]5 alpha-dihydrotestosterone is bound only by those mesenchymal cells closest to the epithelial mammary bud. When mammary epithelia were experimentally associated with mesenchyme of the mammary region and cultured together for 3 days in vitro, they also became surrounded by several layers of [3H]testosterone-binding mesenchymal cells. Correspondingly, this tissue association was accompanied by a substantial increase of androgen-binding sites in the explants. No hormone-building mesenchymal cells were seen in combinations with epidermis or pancreas epithelium; only salivary epithelium showed a weak positive effect. From these results we conclude that mammary epithelium induces the formation of androgen receptors in adjacent mesenchyme and thereby controls the development of androgen responsiveness in this tissue.

UI MeSH Term Description Entries
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D011944 Receptors, Androgen Proteins, generally found in the CYTOPLASM, that specifically bind ANDROGENS and mediate their cellular actions. The complex of the androgen and receptor migrates to the CELL NUCLEUS where it induces transcription of specific segments of DNA. Androgen Receptors,5 alpha-Dihydrotestosterone Receptor,Androgen Receptor,Dihydrotestosterone Receptors,Receptor, Testosterone,Receptors, Androgens,Receptors, Dihydrotestosterone,Receptors, Stanolone,Stanolone Receptor,Testosterone Receptor,5 alpha Dihydrotestosterone Receptor,Androgens Receptors,Receptor, 5 alpha-Dihydrotestosterone,Receptor, Androgen,Receptor, Stanolone,Stanolone Receptors,alpha-Dihydrotestosterone Receptor, 5
D011987 Receptors, Steroid Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes. Corticosteroid Receptors,Receptors, Corticosteroid,Steroid Receptors,Corticosteroid Receptor,Receptors, Steroids,Steroid Receptor,Receptor, Corticosteroid,Receptor, Steroid,Steroids Receptors
D004627 Embryonic Induction The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS). Embryonic Inductions,Induction, Embryonic,Inductions, Embryonic
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone

Related Publications

B Heuberger, and I Fitzka, and G Wasner, and K Kratochwil
October 1979, Developmental biology,
B Heuberger, and I Fitzka, and G Wasner, and K Kratochwil
December 1976, Science (New York, N.Y.),
B Heuberger, and I Fitzka, and G Wasner, and K Kratochwil
March 2024, eLife,
B Heuberger, and I Fitzka, and G Wasner, and K Kratochwil
October 2001, Developmental dynamics : an official publication of the American Association of Anatomists,
B Heuberger, and I Fitzka, and G Wasner, and K Kratochwil
November 1978, Cancer research,
B Heuberger, and I Fitzka, and G Wasner, and K Kratochwil
November 1983, Endocrinology,
B Heuberger, and I Fitzka, and G Wasner, and K Kratochwil
January 1980, Investigative urology,
B Heuberger, and I Fitzka, and G Wasner, and K Kratochwil
February 1997, Development, growth & differentiation,
Copied contents to your clipboard!