DNA primase activity associated with DNA polymerase alpha from Xenopus laevis ovaries. 1982

M Shioda, and E M Nelson, and M L Bayne, and R M Benbow

One of the two forms of DNA polymerase alpha from ovaries of the frog Xenopus laevis catalyzed ribonucleoside triphosphate-dependent DNA synthesis on single-stranded circular fd phage DNA templates. DNA synthesis was dependent on ATP and added template. CTP, GTP, and UTP stimulated DNA synthesis but were not required and could not substitute for ATP. DNA synthesis was not inhibited by alpha-amanitin. Neither poly(dT) nor double-stranded DNA served as template. Analysis of [32P]-dTMP-labeled product by neutral and alkaline agarose gel electrophoresis showed that 0.1- to 1-kilobase DNA fragments (average size of approximately equal to 0.25 kilobase) were synthesized. The fragments were not covalently linked to the template. Either [alpha-32P]NMP, [gamma-32P]ATP, or [gamma-32P]GTP were incorporated also into the product. Analysis of the product after hydrolysis by KOH, alkaline phosphatase, or bacteriophage T4 3' leads to 5' exonuclease showed the presence of a small oligoribonucleotide primer at the 5' end of the newly synthesized DNA. NTP-dependent DNA-synthesizing activity copurified on six columns and cosedimented during glycerol gradient centrifugation with one form of DNA polymerase alpha activity but not with the other form. These results suggest that DNA primase activity is associated with one of the two forms of X. laevis DNA polymerase alpha.

UI MeSH Term Description Entries
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012316 RNA Nucleotidyltransferases Enzymes that catalyze the template-directed incorporation of ribonucleotides into an RNA chain. EC 2.7.7.-. Nucleotidyltransferases, RNA
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi

Related Publications

M Shioda, and E M Nelson, and M L Bayne, and R M Benbow
April 1982, Proceedings of the National Academy of Sciences of the United States of America,
M Shioda, and E M Nelson, and M L Bayne, and R M Benbow
January 1990, Cancer biochemistry biophysics,
M Shioda, and E M Nelson, and M L Bayne, and R M Benbow
February 1984, The Journal of biological chemistry,
M Shioda, and E M Nelson, and M L Bayne, and R M Benbow
March 1983, Developmental biology,
M Shioda, and E M Nelson, and M L Bayne, and R M Benbow
January 1974, Methods in enzymology,
M Shioda, and E M Nelson, and M L Bayne, and R M Benbow
August 1984, The Journal of biological chemistry,
M Shioda, and E M Nelson, and M L Bayne, and R M Benbow
November 1988, Biochemistry,
M Shioda, and E M Nelson, and M L Bayne, and R M Benbow
December 1983, Biochimica et biophysica acta,
M Shioda, and E M Nelson, and M L Bayne, and R M Benbow
April 1978, The Journal of biological chemistry,
M Shioda, and E M Nelson, and M L Bayne, and R M Benbow
December 1989, The Journal of biological chemistry,
Copied contents to your clipboard!