Rat pancreatic kallikrein mRNA: nucleotide sequence and amino acid sequence of the encoded preproenzyme. 1982

G H Swift, and J C Dagorn, and P L Ashley, and S W Cummings, and R J MacDonald

We have cloned via recombinant DNA technology the mRNA sequence for rat pancreatic preprokallikrein. Four cloned overlapping double-stranded cDNAs gave a continuous mRNA sequence of 867 nucleotides beginning within the 5'-noncoding region and extending to the poly(A) tail. The mRNA sequence reveals that pancreatic kallikrein is synthesized as a prezymogen of 265 amino acids, including a proposed secretory prepeptide of 17 amino acids and a proposed activation peptide of 11 amino acids. The activation peptide, although similar in length, is distinct from those of the other classes of pancreatic serine proteases. The amino acid sequence of the predicted active form of the enzyme is closely related to the partial sequences obtained for other kallikrein-like serine proteases including rat submaxillary gland kallikrein, pig pancreatic and submaxillary gland kallikreins, the gamma subunit of mouse nerve growth factor, and rat tonin. Key amino acid residues thought to be involved in the substrate-cleavage specificity of kallikreins are retained. Hybridization analysis showed relatively high levels of kallikrein mRNA in the rat pancreas, submaxillary and parotid glands, spleen, and kidney, indicating the active synthesis of kallikrein in these tissues.

UI MeSH Term Description Entries
D007610 Kallikreins Proteolytic enzymes from the serine endopeptidase family found in normal blood and urine. Specifically, Kallikreins are potent vasodilators and hypotensives and increase vascular permeability and affect smooth muscle. They act as infertility agents in men. Three forms are recognized, PLASMA KALLIKREIN (EC 3.4.21.34), TISSUE KALLIKREIN (EC 3.4.21.35), and PROSTATE-SPECIFIC ANTIGEN (EC 3.4.21.77). Kallikrein,Kininogenase,Callicrein,Dilminal,Kallidinogenase,Kalliginogenase,Kallikrein A,Kallikrein B',Kallikrein Light Chain,Kinin-Forming Enzyme,Padutin,alpha-Kallikrein,beta-Kallikrein,beta-Kallikrein B,Enzyme, Kinin-Forming,Kinin Forming Enzyme,Light Chain, Kallikrein,alpha Kallikrein,beta Kallikrein,beta Kallikrein B
D011288 Prekallikrein A plasma protein which is the precursor of kallikrein. Plasma that is deficient in prekallikrein has been found to be abnormal in thromboplastin formation, kinin generation, evolution of a permeability globulin, and plasmin formation. The absence of prekallikrein in plasma leads to Fletcher factor deficiency, a congenital disease. Fletcher Factor,Plasma Prokallikrein,Kallikreinogen,Plasma Prokallikrein A,Factor, Fletcher,Prokallikrein A, Plasma,Prokallikrein, Plasma
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

G H Swift, and J C Dagorn, and P L Ashley, and S W Cummings, and R J MacDonald
January 1982, Peptides,
G H Swift, and J C Dagorn, and P L Ashley, and S W Cummings, and R J MacDonald
January 1982, Proceedings of the National Academy of Sciences of the United States of America,
G H Swift, and J C Dagorn, and P L Ashley, and S W Cummings, and R J MacDonald
December 1982, The Journal of biological chemistry,
G H Swift, and J C Dagorn, and P L Ashley, and S W Cummings, and R J MacDonald
January 1984, Proceedings of the National Academy of Sciences of the United States of America,
G H Swift, and J C Dagorn, and P L Ashley, and S W Cummings, and R J MacDonald
December 1984, Endocrinology,
G H Swift, and J C Dagorn, and P L Ashley, and S W Cummings, and R J MacDonald
May 1973, Biochimica et biophysica acta,
G H Swift, and J C Dagorn, and P L Ashley, and S W Cummings, and R J MacDonald
December 1967, Biochimica et biophysica acta,
G H Swift, and J C Dagorn, and P L Ashley, and S W Cummings, and R J MacDonald
December 1985, Biochemistry,
G H Swift, and J C Dagorn, and P L Ashley, and S W Cummings, and R J MacDonald
November 1988, The Journal of biological chemistry,
G H Swift, and J C Dagorn, and P L Ashley, and S W Cummings, and R J MacDonald
April 1990, Nucleic acids research,
Copied contents to your clipboard!