DNA motions in the nucleosome core particle. 1982

J Wang, and M Hogan, and R H Austin

We have used time-resolved triplet state anisotropy decay techniques to measure the conformational flexibility of DNA in the nucleosome. From these measurements we conclude that, in a nucleosome, the DNA helix experiences substantial internal flexibility, which occurs with a time constant near 30 nsec. We find that our data can be fit well by a modified version of the Barkley-Zimm model for DNA motion, allowing only DNA twisting motions and the overall tumbling of the nucleosome. That fit yields a calculated torsional rigidity equal to 1.8 X 10(-19) erg X cm, a value equal to that measured for uncomplexed DNA. We conclude from such similarity that large, fast twisting motions of the DNA helix persist, nearly unaltered, when DNA is wrapped to form a nucleosome.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence

Related Publications

J Wang, and M Hogan, and R H Austin
October 1985, Biopolymers,
J Wang, and M Hogan, and R H Austin
January 2000, Biochemical Society transactions,
J Wang, and M Hogan, and R H Austin
August 2002, Proceedings of the National Academy of Sciences of the United States of America,
J Wang, and M Hogan, and R H Austin
March 2007, The journal of physical chemistry. B,
J Wang, and M Hogan, and R H Austin
January 1988, Journal of molecular biology,
J Wang, and M Hogan, and R H Austin
December 1980, Molecular biology reports,
J Wang, and M Hogan, and R H Austin
January 2023, Methods in molecular biology (Clifton, N.J.),
J Wang, and M Hogan, and R H Austin
January 2018, Scientific reports,
J Wang, and M Hogan, and R H Austin
January 2000, Journal of biomolecular structure & dynamics,
Copied contents to your clipboard!