Early development and migration of the trigeminal motor nucleus in the chick embryo. 1980

M B Heaton, and S A Moody

The development of the trigeminal motor nucleus in the chick embryo was studied using autoradiographic, cell staining, fiber staining, and axonal transport techniques. It was found that this nucleus arises very early in neurogenesis, with the first cells produced at 48 hours of incubation (stage 12), peak cell production at 50--56 hours (stage 15), and neuroblast proliferation completed by 72 hours (stage 18). As has been described in mammalian embryos, the primordial trigeminal cells move from the ventricular layer to accumulate as part of the common medial column, and later migrate in a ventrolateral direction to form the definitive lateral motor nucleus. The first identifiable component of the trigeminal system is the semilunar ganglion, which flanks the neural tube at stage 12, and sends afferents into the metencephalon by stage 13. By stage 12-13, the medial column cells are first apparent, and at stage 14, a few of these medial column cells have moved to begin formation of a lateral nucleus. At this time, a thin motor root can be seen exiting the brainstem. During subsequent stages, migratory traffic from medial to lateral regions increases, with cells frequently moving in association with fiber processes in the marginal zone. These fibers are presumed to emanate from secondary sensory, reticular, and medial column neuroblasts. By day 5, the medial column is greatly depleted and by day 6--7, the definitive lateral motor nucleus is formed. Beginning at 5 days, the dorsal motor nucleus can be detected, with cells from the lateral nucleus appearing to stream in a dorsomedial direction for its formation. Injections of horseradish peroxidase (HRP) into the mandibular process of the first visceral arch resulted in retrograde labeling of lateral nucleus cells as early as 3.5 days of incubation. In addition, migrating cells, intermediate between medial column and lateral nucleus, were similarly labeled. These observations indicate that processes of the lateral nucleus cells and those of migrating cells are well into their peripheral field at this age, but we cannot conclude that neuromuscular affiliations have been established, due to the possibility of HRP diffusion and growth cone uptake.

UI MeSH Term Description Entries
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D012668 Trigeminal Ganglion The semilunar-shaped ganglion containing the cells of origin of most of the sensory fibers of the trigeminal nerve. It is situated within the dural cleft on the cerebral surface of the petrous portion of the temporal bone and gives off the ophthalmic, maxillary, and part of the mandibular nerves. Gasserian Ganglion,Semilunar Ganglion,Gasser's Ganglion,Trigeminal Ganglia,Ganglia, Trigeminal,Ganglion, Gasser's,Ganglion, Gasserian,Ganglion, Semilunar,Ganglion, Trigeminal,Gasser Ganglion,Gassers Ganglion,Semilunar Ganglions,Trigeminal Ganglias,Trigeminal Ganglions
D014276 Trigeminal Nerve The 5th and largest cranial nerve. The trigeminal nerve is a mixed motor and sensory nerve. The larger sensory part forms the ophthalmic, mandibular, and maxillary nerves which carry afferents sensitive to external or internal stimuli from the skin, muscles, and joints of the face and mouth and from the teeth. Most of these fibers originate from cells of the TRIGEMINAL GANGLION and project to the TRIGEMINAL NUCLEUS of the brain stem. The smaller motor part arises from the brain stem trigeminal motor nucleus and innervates the muscles of mastication. Cranial Nerve V,Fifth Cranial Nerve,Nerve V,Nervus Trigeminus,Cranial Nerve, Fifth,Fifth Cranial Nerves,Nerve V, Cranial,Nerve Vs,Nerve, Fifth Cranial,Nerve, Trigeminal,Trigeminal Nerves,Trigeminus, Nervus

Related Publications

M B Heaton, and S A Moody
January 1986, Developmental biology (New York, N.Y. : 1985),
M B Heaton, and S A Moody
January 1988, Pediatric neuroscience,
M B Heaton, and S A Moody
February 1993, Journal of morphology,
M B Heaton, and S A Moody
November 1974, The American journal of anatomy,
M B Heaton, and S A Moody
March 1992, The Journal of experimental zoology,
M B Heaton, and S A Moody
November 2001, Developmental dynamics : an official publication of the American Association of Anatomists,
M B Heaton, and S A Moody
January 1958, Proceedings of the National Academy of Sciences of the United States of America,
M B Heaton, and S A Moody
November 1987, The Journal of comparative neurology,
Copied contents to your clipboard!