Thymic requirement for cyclical idiotypic and reciprocal anti-idiotypic immune responses to a T-independent antigen. 1980

G Kelsoe, and D Isaak, and J Cerny

The role of the thymus in the cyclical appearance of the dominant idiotype of the myeloma protein secreted by the TEPC-15 plasmacytoma (T-15)-bearing plaque-forming cells (PFC) and anti-idiotypic cells (i.e., cells with receptors for T-15) in the spleen during a primary response to the phosphorylcholine determinant of Streptococcus pneumoniae, strain R36a (Pn) was studied using normal mice, thymus-deficient nude mice, and thymus gland-grafted nude mice (TG-nude). The nude mice and their phenotypically normal littermates (LM) were backcrossed on the BALB/c genetic background. The kinetics of the anti-Pn PFC response of BALB/c inbred mice, littermates of nude mice, and TG-nude mice were essentially the same. There was an initial peak on day 5-6 followed by a decline to near background, and then a second peak on day 12. In nude mice, the first peak of anti-Pn PFC (day 5) was comparable in magnitude to that of mice with an intact thymus; however, there was no second peak. In contrast to the cellular response measured at the level of PFC, the serum antibody response to Pn (assayed by passive hemagglutination of sheep erythrocytes coated with Pn polysaccharide) was comparable in all groups of mice and did not show a measurable oscillation. The anti-idiotypic cellular activity was determined by the ability of spleen cells to bind radiolabeled (125I) TEPC-15 myeloma protein (IgA, kappa) which carries an idiotypic determinant indistinguishable from that of most anti-phosphorylcholine antibodies in BALB/c mice. Binding of radiolabeled McPC-603 (IgA, kappa) and MOPC-315 (IgA, lambda 2) myeloma proteins (which lack the T-15 idiotypic determinant) served as controls. The changes in T-15 binding by splenic lymphocytes following the Pn immunization differed between normal and athymic mice. BALB/c, LM, and TG-nude mice showed a biphasic pattern with peaks at days 3--4 and 10--11 that was nearly reciprocal to the PFC curve. On the other hand, T-15 binding in nude mice either declined and remained depressed or was not affected by the ongoing anti-Pn response. These observations demonstrate that mature T cells are required for cyclical idiotypic and anti-idiotypic responses to immunization with a T-independent antigen and suggest that the cyclical immune response may result from an interaction between idiotypic and anti-idiotypic cell clones.

UI MeSH Term Description Entries
D007130 Immunoglobulin Idiotypes Unique genetically-controlled determinants present on ANTIBODIES whose specificity is limited to a single group of proteins (e.g., another antibody molecule or an individual myeloma protein). The idiotype appears to represent the antigenicity of the antigen-binding site of the antibody and to be genetically codetermined with it. The idiotypic determinants have been precisely located to the IMMUNOGLOBULIN VARIABLE REGION of both immunoglobin polypeptide chains. Idiotypes, Immunoglobulin,Ig Idiotypes,Idiotype, Ig,Idiotype, Immunoglobulin,Idiotypes, Ig,Ig Idiotype,Immunoglobulin Idiotype
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000921 Antibody-Producing Cells Cells of the lymphoid series that can react with antigen to produce specific cell products called antibodies. Various cell subpopulations, often B-lymphocytes, can be defined, based on the different classes of immunoglobulins that they synthesize. Antibody-Producing Cell,Antibody-Secreting Cell,Antibody-Secreting Cells,Immunoglobulin-Producing Cells,Immunoglobulin-Secreting Cells,Antibody Producing Cell,Antibody Producing Cells,Antibody Secreting Cell,Antibody Secreting Cells,Cell, Antibody-Producing,Cell, Antibody-Secreting,Cell, Immunoglobulin-Producing,Cell, Immunoglobulin-Secreting,Cells, Antibody-Producing,Cells, Antibody-Secreting,Cells, Immunoglobulin-Producing,Cells, Immunoglobulin-Secreting,Immunoglobulin Producing Cells,Immunoglobulin Secreting Cells,Immunoglobulin-Producing Cell,Immunoglobulin-Secreting Cell
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.
D013296 Streptococcus pneumoniae A gram-positive organism found in the upper respiratory tract, inflammatory exudates, and various body fluids of normal and/or diseased humans and, rarely, domestic animals. Diplococcus pneumoniae,Pneumococcus

Related Publications

G Kelsoe, and D Isaak, and J Cerny
June 1988, Journal of immunology (Baltimore, Md. : 1950),
G Kelsoe, and D Isaak, and J Cerny
June 1976, Journal of immunology (Baltimore, Md. : 1950),
G Kelsoe, and D Isaak, and J Cerny
May 1992, Transfusion,
G Kelsoe, and D Isaak, and J Cerny
July 1982, Rinsho byori. The Japanese journal of clinical pathology,
G Kelsoe, and D Isaak, and J Cerny
February 1983, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!