Studies on the presence of vasopressin, oxytocin and vasotocin in the pineal gland, subcommissural organ and fetal pituitary gland: failure to demonstrate vasotocin in mammals. 1980

J Dogterom, and F G Snijdewint, and P Pévet, and D F Swaab

The demonstration of vasotocin in the mammalian pineal gland, subcommissural organ and fetal pituitary gland by bioassay has led to hypotheses regarding the function of this hormone in various reproductive processes. Preliminary examinations of the pineal gland and subcommissural organ with a specific radioimmunoassay failed to show vasotocin immunoreactivity. The presence of vasotocin, vasopressin and oxytocin in the pineal gland, subcommissural organ and fetal neurohypophysis was therefore investigated, using three specific radioimmunoassays. Frog and chicken pituitary glands were used to validate the vasotocin radioimmunoassay. Direct measurements in diluted homogenates of pituitary glands from frogs, chickens, mid-term fetal sheep and near-term fetal seals revealed the presence of vasotocin only in the frog and chicken pituitary glands, while vasopressin and oxytocin were found in the two fetal pituitary homogenates. Vasopressin and ocytocin were measured in homogenates of rat and bovine pineal glands and in preparations of the subcommissural organ of rats and rabbits after extraction with Vycor glass powder, but no specific vasotocin immunoreactivity was observed. These results indicate a discrepancy between the reported biological activity of vasotocin in the pineal gland, subcommissural organ and fetal pituitary gland and the immunoreactivity of this material, which can at present only be explained by the presence of a peptide which is structurally closely related to, but not identical with, vasotocin.

UI MeSH Term Description Entries
D009490 Neurosecretory Systems A system of NEURONS that has the specialized function to produce and secrete HORMONES, and that constitutes, in whole or in part, an ENDOCRINE SYSTEM or organ. Neuroendocrine System,Neuroendocrine Systems,Neurosecretory System,System, Neuroendocrine,System, Neurosecretory,Systems, Neuroendocrine,Systems, Neurosecretory
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D010870 Pineal Gland A light-sensitive neuroendocrine organ attached to the roof of the THIRD VENTRICLE of the brain. The pineal gland secretes MELATONIN, other BIOGENIC AMINES and NEUROPEPTIDES. Epiphysis Cerebri,Pineal Body,Corpus Pineale,Gland, Pineal,Pineal Bodies,Pineal Glands
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D011893 Rana esculenta An edible species of the family Ranidae, occurring in Europe and used extensively in biomedical research. Commonly referred to as "edible frog". Pelophylax esculentus
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Dogterom, and F G Snijdewint, and P Pévet, and D F Swaab
January 1980, Cell and tissue research,
J Dogterom, and F G Snijdewint, and P Pévet, and D F Swaab
January 1981, Peptides,
J Dogterom, and F G Snijdewint, and P Pévet, and D F Swaab
January 1953, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
J Dogterom, and F G Snijdewint, and P Pévet, and D F Swaab
March 1980, Neuroscience letters,
J Dogterom, and F G Snijdewint, and P Pévet, and D F Swaab
April 1975, Endocrinology,
J Dogterom, and F G Snijdewint, and P Pévet, and D F Swaab
April 1978, The Journal of endocrinology,
J Dogterom, and F G Snijdewint, and P Pévet, and D F Swaab
November 1965, Endocrinology,
J Dogterom, and F G Snijdewint, and P Pévet, and D F Swaab
January 1954, Harvey lectures,
J Dogterom, and F G Snijdewint, and P Pévet, and D F Swaab
May 1976, Nature,
Copied contents to your clipboard!