Electrochemical profile for ion transport across the membrane of proximal tubular cells. 1980

M Fujimoto, and K Naito, and T Kubota

A micropuncture study was performed on the bullfrog kidney proximal tubular cells utilizing double-barreled ion-selective microelectrodes. The intracellular of Na+, K+, Cl-, HCO3(-) and pH were determined to be 21.6 mEq/L, 67.4 mEq/L, 9.9 mEq/L, 20.2 mEq/L, and 7.49 pH units, respectively. In the extracellular fluid the following activities were found: Na+, 87.4 mEq/L; K+, 2.64 mEq/L; Cl-, 72.5 mEq/L; HCO3(-), 17.9 mEq/L; and pH, 7.66. The membrane potential difference was 68.4 mV and 60.4 mV across the peritubular and brush borders, respectively. The electrochemical potential differences across the individual borders of the proximal tubule cells were separately calculated by setting the intracellular level of both electrical and chemical potentials at zero for convenience. From these analyses, the following interpretations are made. (1) In the net reabsorption of Na+, luminal Na+ enters the cell along a 95-mV gradient across the luminal border and is pumped out to the interstitium against a 104 mV gradient. In the reabsorption of bicarbonate, an uphill pump of about 69 mV (about 70% of the Na+ entry gradient) must exist on the luminal border, of which about 55 mV (80% of the bicarbonate gradient) is accounted for by the H+ secretory pump. (2) In the net reabsorption of K+, a significant K+ uptake pump must exist on the luminal border in addition to the powerful peritubular Na+-K+ exchange pump. The reabsorption of Cl- by the epithelium may take place in two ways: (a) transmembrane transport involving an uphill step of several millivolts, and (b) paracellular leakage through the tight junction. It is thought that the Na+ pump located on the basolateral border of the proximal tubule cell plays a primary role in the regulation of the movement of other ions and water. The regulatory mechanisms of these substances may involve some electrochemical feedback mechanism that works across the proximal tubular epithelium.

UI MeSH Term Description Entries
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D004573 Electrolytes Substances that dissociate into two or more ions, to some extent, in water. Solutions of electrolytes thus conduct an electric current and can be decomposed by it (ELECTROLYSIS). (Grant & Hackh's Chemical Dictionary, 5th ed) Electrolyte
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

M Fujimoto, and K Naito, and T Kubota
December 2006, Toxicology,
M Fujimoto, and K Naito, and T Kubota
September 1986, The American journal of physiology,
M Fujimoto, and K Naito, and T Kubota
January 1972, Haematologia,
M Fujimoto, and K Naito, and T Kubota
January 2003, Reviews of physiology, biochemistry and pharmacology,
M Fujimoto, and K Naito, and T Kubota
January 1989, Cell biochemistry and function,
M Fujimoto, and K Naito, and T Kubota
January 1988, The Japanese journal of physiology,
M Fujimoto, and K Naito, and T Kubota
April 2009, Biopharmaceutics & drug disposition,
M Fujimoto, and K Naito, and T Kubota
November 1975, The American journal of physiology,
M Fujimoto, and K Naito, and T Kubota
November 2001, Accounts of chemical research,
M Fujimoto, and K Naito, and T Kubota
January 1985, Doklady Akademii nauk SSSR,
Copied contents to your clipboard!