Intracellular voltage of isolated epithelia of frog skin: apical and basolateral cell punctures. 1980

R S Fisher, and D Erlij, and S I Helman

Isolated epithelia of frog skin were prepared with collagenase, and the cells were punctured with intracellular microelectrodes across their apical (outer) and basolateral (inner) surfaces. Regardless of the route of cell puncture, the intracellular voltage (Vosc) in short-circuited isolated epithelia was markedly negative, averaging -70.4 mV for apical punctures and -91.6 mV for basolateral punctures. As in intact epithelia, amiloride outside caused the Vosc to become more negative (means of -96.7 and -101.8 mV), with a concomitant increase in the resistance of the apical barrier. Increasing the [K)i of the basolateral solution from 2.4 to 8.0 or 14.4 mM caused rapid step depolarization (5-10 s) of the Vosc under transepithelial Na transporting and amiloride-inhibited conditions of Na transport, with the delta Vosc ranging between 23.9 and 68.3 mV per decade change of [K]i. The finding that the Vosc of isolated epithelia of frog skin is independent of the route of cell penetration is consistent with the notion that the cells of the stratified epithelium are electrically coupled (functional syncitium). Moreover, the isolated epithelium can serve as a useful preparation, especially in studies designed to investigate the properties of the basolateral surfaces of cells.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D012879 Skin Physiological Phenomena The functions of the skin in the human and animal body. It includes the pigmentation of the skin. Skin Physiological Processes,Skin Physiology,Physiology, Skin,Skin Physiological Concepts,Skin Physiological Phenomenon,Skin Physiological Process,Concept, Skin Physiological,Concepts, Skin Physiological,Phenomena, Skin Physiological,Phenomenas, Skin Physiological,Phenomenon, Skin Physiological,Phenomenons, Skin Physiological,Physiological Concept, Skin,Physiological Concepts, Skin,Physiological Phenomena, Skin,Physiological Phenomenas, Skin,Physiological Phenomenon, Skin,Physiological Phenomenons, Skin,Process, Skin Physiological,Processes, Skin Physiological,Skin Physiological Concept,Skin Physiological Phenomenas,Skin Physiological Phenomenons
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

R S Fisher, and D Erlij, and S I Helman
September 1985, The American journal of physiology,
R S Fisher, and D Erlij, and S I Helman
August 1985, The Journal of general physiology,
R S Fisher, and D Erlij, and S I Helman
November 1985, The American journal of physiology,
R S Fisher, and D Erlij, and S I Helman
April 1987, The American journal of physiology,
R S Fisher, and D Erlij, and S I Helman
January 1994, Pflugers Archiv : European journal of physiology,
R S Fisher, and D Erlij, and S I Helman
January 1984, The Journal of membrane biology,
R S Fisher, and D Erlij, and S I Helman
February 2004, Proceedings of the National Academy of Sciences of the United States of America,
R S Fisher, and D Erlij, and S I Helman
November 1986, The American journal of physiology,
Copied contents to your clipboard!