| D007108 |
Immune Tolerance |
The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. |
Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune |
|
| D007111 |
Immunity, Cellular |
Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. |
Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune |
|
| D008285 |
Major Histocompatibility Complex |
The genetic region which contains the loci of genes which determine the structure of the serologically defined (SD) and lymphocyte-defined (LD) TRANSPLANTATION ANTIGENS, genes which control the structure of the IMMUNE RESPONSE-ASSOCIATED ANTIGENS, HUMAN; the IMMUNE RESPONSE GENES which control the ability of an animal to respond immunologically to antigenic stimuli, and genes which determine the structure and/or level of the first four components of complement. |
Histocompatibility Complex,Complex, Histocompatibility,Complex, Major Histocompatibility,Complices, Histocompatibility,Complices, Major Histocompatibility,Histocompatibility Complex, Major,Histocompatibility Complices,Histocompatibility Complices, Major,Major Histocompatibility Complices |
|
| D008297 |
Male |
|
Males |
|
| D011828 |
Radiation Chimera |
An organism whose body contains cell populations of different genotypes as a result of the TRANSPLANTATION of donor cells after sufficient ionizing radiation to destroy the mature recipient's cells which would otherwise reject the donor cells. |
Chimera, Radiation,Chimeras, Radiation,Radiation Chimeras |
|
| D001853 |
Bone Marrow |
The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. |
Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow |
|
| D003602 |
Cytotoxicity, Immunologic |
The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. |
Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic |
|
| D006183 |
H-2 Antigens |
The major group of transplantation antigens in the mouse. |
H2 Antigens,Antigens, H-2,Antigens, H2,H 2 Antigens |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D001324 |
Autoantigens |
Endogenous tissue constituents with the ability to interact with AUTOANTIBODIES and cause an immune response. |
Autoantigen,Autologous Antigen,Autologous Antigens,Self-Antigen,Self-Antigens,Antigen, Autologous,Antigens, Autologous,Self Antigen,Self Antigens |
|