Cardiac contractility and sarcolemmal calcium binding in several cardiac muscle preparations. 1981

D M Bers, and K D Philipson, and G A Langer

Striking correlations are found between cardiac contractility and Ca2+ binding to isolated cardiac sarcolemma in rabbit, neonatal rat, and frog ventricular tissue. Deviations from this correlation are seen in the adult rat ventricle and rabbit atrium. The observation of this correlation in the three former tissues and under various ionic conditions suggests that this correlation is not coincidental and that Ca2+ bound to the cardiac sarcolemma is of major importance in the control of myocardial contractility. The data are consistent with a functional Ca2+-induced Ca2+ release system in the sarcoplasmic reticulum (SR) of all the tissues (which is controlled by Ca2+ entry from sarcolemmal sites), with the adult rat ventricular and rabbit atrial SR Ca2+ release being much more sensitive to CA2+. It is suggested that the frog, neonatal rat, and rabbit ventricles depend more directly on the entry of Ca2+ from sarcolemmal sites for the control of tension development, whereas the adult rat ventricle and rabbit atrium depend to a greater extent on CA2+ released from the SR.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D M Bers, and K D Philipson, and G A Langer
September 1979, The American journal of physiology,
D M Bers, and K D Philipson, and G A Langer
January 1987, Biomedica biochimica acta,
D M Bers, and K D Philipson, and G A Langer
September 1980, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
D M Bers, and K D Philipson, and G A Langer
September 1979, Journal of molecular and cellular cardiology,
D M Bers, and K D Philipson, and G A Langer
April 1990, The Journal of biological chemistry,
D M Bers, and K D Philipson, and G A Langer
January 1981, Comparative biochemistry and physiology. C: Comparative pharmacology,
D M Bers, and K D Philipson, and G A Langer
March 1983, The Journal of biological chemistry,
D M Bers, and K D Philipson, and G A Langer
March 1970, The American journal of the medical sciences,
D M Bers, and K D Philipson, and G A Langer
March 1986, European journal of biochemistry,
Copied contents to your clipboard!