Morphologic aspects of adhesion and spreading behavior of amphibian blastula and gastrula cells. 1981

J LeBlanc, and I Brick

By means of SEM we have examined spreading and adhesive behavior of cells isolated from superficial and deep regions of germ layers from blastula to late gastrula in Rana pipiens embryos. Each of the cell populations sampled show adhesive and spreading characteristics distinctive for each region and stage which we interpret as demonstrating the following: (1) From blastula through late gastrula, cells from each region have already acquired the ability to express surface morphologic and adhesive features independently of their association with their neighbors, i.e. autonomously. (2) The distinctive spreading and adhesive characteristics for each tissue sub-population suggest kinetic properties seemingly related to their in vivo morphogenetic movements, epiboly or invagination. (3) The appearance within germ layers of two subpopulations between blastula to mid-gastrula, suggests early intratissue inductive interactions. (4) The outermost, superficial cells from each germ layer show proximal and distal surface differences which may reflect adhesive differentials as postulated by Steinberg (1970) for presumptive ectoderm cells. (5) With the exception of superficial cell proximal and distal differentiation, freshly disaggregated cells do not show morphologic characteristics seen in corresponding cells spreading for one hour.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009672 Notochord A cartilaginous rod of mesodermal cells at the dorsal midline of all CHORDATE embryos. In lower vertebrates, notochord is the backbone of support. In the higher vertebrates, notochord is a transient structure, and segments of the vertebral column will develop around it. Notochord is also a source of midline signals that pattern surrounding tissues including the NEURAL TUBE development. Chordamesoderm,Chordamesoderms,Notochords
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D004475 Ectoderm The outer of the three germ layers of an embryo. Apical Ectodermal Ridge,Apical Ectodermal Ridges,Ectodermal Ridge, Apical,Ectoderms
D004707 Endoderm The inner of the three germ layers of an embryo. Definitive Endoderm,Definitive Endoderms,Endoderm, Definitive,Endoderms
D005775 Gastrula The developmental stage that follows BLASTULA or BLASTOCYST. It is characterized by the morphogenetic cell movements including invagination, ingression, and involution. Gastrulation begins with the formation of the PRIMITIVE STREAK, and ends with the formation of three GERM LAYERS, the body plan of the mature organism. Archenteron,Blastopore,Gastrocoele,Primitive Gut,Archenterons,Blastopores,Gastrocoeles,Gastrulas,Gut, Primitive,Guts, Primitive,Primitive Guts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J LeBlanc, and I Brick
January 1974, Annals of the New York Academy of Sciences,
J LeBlanc, and I Brick
April 1989, The Journal of experimental zoology,
J LeBlanc, and I Brick
January 1989, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
J LeBlanc, and I Brick
January 2019, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!