Phospholipid topography of the photosynthetic membrane of Rhodopseudomonas sphaeroides. 1981

K K Al-Bayatti, and J Y Takemoto

The topography of phospholipids in the photosynthetic membranes of Rhodopseudomonas sphaeroides was investigated by using purified chromatophores and spheroplast-derived vesicles (SDVs). Chromatophores are closed vesicles oriented inside out with respect to the cytoplasmic membrane (cytoplasmic side out) and obtained from French-pressed cell lysates. SDVs are oriented right side out (periplasmic side out) and are obtained after osmotic lysis of lysozyme-treated cells. Phosphatidylethanolamine (PE) comprised approximately 62% and phosphatidylglycerol (PG) comprised approximately 33% of the total phospholipid of both vesicle preparations. The relatively membrane impermeable reagent trinitrobenzenesulfonate (TNBS) at 3 mM concentration and 5 degrees C modified chromatophore and SDV PE with kinetics indicating the occurrence of fast- and slow-reacting pools of PE. The fast-reacting pools comprised 33% and 55% of the total PE of chromatophores and SDVs, respectively. The slow-reacting pools comprised 61% and 32% of the total PE of chromatophores and SDVs, respectively. Phospholipase A2 treatment of chromatophores (1 unit/mg of vesicle protein) for 1 h at 37 degrees C resulted in hydrolysis of 73% and 77% of the total PG and PE, respectively. Similar enzyme treatment of SDVs resulted in 14% and 60% hydrolysis of the total PG and PE, respectively. Phospholipase A2 treatment inhibited 60% of the succinate dehydrogenase activity of chromatophores but only 8% of the activity of SDVs, indicating the membrane impermeability of phospholipase A2. Incubation of chromatophores for 10 min with 3 mM TNBS at 5 degrees C and then treatment with phospholipase A2 for 10 min and 1 h resulted in the hydrolysis of 10% and 61%, respectively, of unmodified PE. The results indicate asymmetric distributions of PE polar head groups (32-33% cytoplasmic side, 55-61% periplasmic side) and PG (73% cytoplasmic side, 14% periplasmic side) across the membrane. Also, a rapid and unidirectional transbilayer movement of PE polar head groups from the periplasmic to cytoplasmic surfaces of the membrane appears to occur during phospholipase A2 hydrolysis on the chromatophore surfaces.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D002338 Carotenoids The general name for a group of fat-soluble pigments found in green, yellow, and leafy vegetables, and yellow fruits. They are aliphatic hydrocarbons containing 4 terpene subunits. Carotenes,Carotenoid,Tetraterpene Derivatives,Tetraterpenes,Carotene,Derivatives, Tetraterpene
D001436 Bacteriorhodopsins Rhodopsins found in the PURPLE MEMBRANE of halophilic archaea such as HALOBACTERIUM HALOBIUM. Bacteriorhodopsins function as an energy transducers, converting light energy into electrochemical energy via PROTON PUMPS. Bacteriorhodopsin
D012242 Rhodobacter sphaeroides Spherical phototrophic bacteria found in mud and stagnant water exposed to light. Rhodopseudomonas sphaeroides,Rhodobacter spheroides,Rhodopseudomonas spheroides
D013385 Succinate Dehydrogenase A flavoprotein containing oxidoreductase that catalyzes the dehydrogenation of SUCCINATE to fumarate. In most eukaryotic organisms this enzyme is a component of mitochondrial electron transport complex II. Succinic Oxidase,Fumarate Reductase,Succinic Dehydrogenase,Dehydrogenase, Succinate,Dehydrogenase, Succinic,Oxidase, Succinic,Reductase, Fumarate

Related Publications

K K Al-Bayatti, and J Y Takemoto
January 1984, Journal of cellular biochemistry,
K K Al-Bayatti, and J Y Takemoto
August 1980, Biochimica et biophysica acta,
K K Al-Bayatti, and J Y Takemoto
January 1983, Journal of cellular biochemistry,
K K Al-Bayatti, and J Y Takemoto
June 1984, Journal of bacteriology,
Copied contents to your clipboard!