The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer nuclear magnetic resonance. 1981

D G Gadian, and G K Radda, and T R Brown, and E M Chance, and M J Dawson, and D R Wilkie

1. The activity of creatine kinase in intact anaerobic frog muscle at 4 degrees C at rest and during contraction was investigated by using saturation-transfer 31P n.m.r. 2. At rest, the measured forward (phosphocreatine to ATP) reaction flux was 1.7 X 10(-3) M . s-1 and the backward flux was 1.2 X 10(-3) M . s-1. The large magnitude of both fluxes shows that creatine kinase is active in resting muscle, so the observed constancy of [phosphocreatine] demonstrates that the enzyme and its substrates are at equilibrium. 3. The apparent discrepancy between the fluxes must arise largely from an underestimation of the backward flux resulting from interaction of ATP with other systems, e.g. via adenylate kinase. For purposes of further calculation we have therefore adopted 1.6 X 10(-3) M . s-1 as an estimate of both fluxes. 4. During contraction, when the creatine kinase reaction is no longer at equilibrium, the net rate of phosphocreatine breakdown, estimated directly from the change in area of the inorganic phosphate peak, was 0.75 X 10(-3) M . s-1. Saturation transfer indicates that the forward reaction flux remains at approx. 1.6 X 10(-3) M . s-1 and the backward flux decreases to about 0.85 X 10(-3) M . s-1. 5. The activity of creatine kinase during contraction is large enough to account for the well-established observation that, during contraction, the concentration of ATP falls by less than 2-3%. The reaction catalysed by creatine kinase is driven forward during contraction by the large relative increase in the concentration of free ADP, which is more than doubled. 6. The observation that the forward flux does not increase during contraction and that the backward flux decreases can most simply be explained on the basis of competition of reactants for a limited amount of enzyme.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010725 Phosphocreatine An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996) Creatine Phosphate,Neoton,Phosphocreatine, Disodium Salt,Phosphorylcreatine,Disodium Salt Phosphocreatine,Phosphate, Creatine
D011896 Rana temporaria A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc. European Common Frog,Frog, Common European,Common European Frog,Common Frog, European,European Frog, Common,Frog, European Common
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D G Gadian, and G K Radda, and T R Brown, and E M Chance, and M J Dawson, and D R Wilkie
January 1989, Progress in clinical and biological research,
D G Gadian, and G K Radda, and T R Brown, and E M Chance, and M J Dawson, and D R Wilkie
February 1991, NMR in biomedicine,
D G Gadian, and G K Radda, and T R Brown, and E M Chance, and M J Dawson, and D R Wilkie
July 1998, Biochimica et biophysica acta,
D G Gadian, and G K Radda, and T R Brown, and E M Chance, and M J Dawson, and D R Wilkie
June 1987, Biophysical journal,
D G Gadian, and G K Radda, and T R Brown, and E M Chance, and M J Dawson, and D R Wilkie
January 1997, Neurobiology of aging,
D G Gadian, and G K Radda, and T R Brown, and E M Chance, and M J Dawson, and D R Wilkie
May 1988, Magnetic resonance in medicine,
D G Gadian, and G K Radda, and T R Brown, and E M Chance, and M J Dawson, and D R Wilkie
September 1978, The Journal of physiology,
D G Gadian, and G K Radda, and T R Brown, and E M Chance, and M J Dawson, and D R Wilkie
January 1992, The Journal of physiology,
D G Gadian, and G K Radda, and T R Brown, and E M Chance, and M J Dawson, and D R Wilkie
September 1982, European journal of biochemistry,
D G Gadian, and G K Radda, and T R Brown, and E M Chance, and M J Dawson, and D R Wilkie
June 1976, The Journal of physiology,
Copied contents to your clipboard!