Metabolism of 8-aminoquinoline antimalarial agents. 1981

A Strother, and I M Fraser, and R Allahyari, and B E Tilton

Some of the most effective antimalarial agents are derivatives of 8-aminoquinoline. The metabolic products of many of these compounds appear to be toxic to the erythrocytes of certain human subjects, especially those deficient in glucose-6-phosphate dehydrogenase. Although a number of studies have been conducted over many years, the metabolism of most of these compounds has not been determined. These studies are reviewed.Adult dogs dosed with tritium-labelled primaquine were observed to excrete approximately 16% of the injected radioactivity in the urine within 8 hours. Organic extracts of the urine were fractionated by thin-layer chromatography and the metabolic pattern obtained. Some primaquine was excreted along with at least five metabolites including 5-hydroxy-6-methoxy-8-(4-amino-1-methylbutylamino)quinoline (5HPQ) and a small amount of 6-hydroxy-8-(4-amino-1-methylbutylamino)quinoline (6HPQ). The 5HPQ could form a quinoneimine-type compound which may be a methaemoglobin-forming compound. This and other metabolites isolated from urine were found to be active methaemoglobin formers in in vitro studies. In vitro metabolism of primaquine by mouse liver enzymes also produced compounds capable of methaemoglobin formation. One of these had a blue colour when exposed to alkaline conditions, air, and light, and mass spectral data and nuclear magnetic resonance analysis indicated a structure similar to a 5,6-dihydroxy derivative of primaquine. However, the chemical structure of the metabolite was not identified in these studies.

UI MeSH Term Description Entries
D008708 Methemoglobinemia The presence of methemoglobin in the blood, resulting in cyanosis. A small amount of methemoglobin is present in the blood normally, but injury or toxic agents convert a larger proportion of hemoglobin into methemoglobin, which does not function reversibly as an oxygen carrier. Methemoglobinemia may be due to a defect in the enzyme NADH methemoglobin reductase (an autosomal recessive trait) or to an abnormality in hemoglobin M (an autosomal dominant trait). (Dorland, 27th ed) Methemoglobinemias
D011319 Primaquine An aminoquinoline that is given by mouth to produce a radical cure and prevent relapse of vivax and ovale malarias following treatment with a blood schizontocide. It has also been used to prevent transmission of falciparum malaria by those returning to areas where there is a potential for re-introduction of malaria. Adverse effects include anemias and GI disturbances. (From Martindale, The Extra Pharmacopeia, 30th ed, p404) Primacin,Primaquine Diphosphate,Primaquine Phosphate,Diphosphate, Primaquine,Phosphate, Primaquine
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005955 Glucosephosphate Dehydrogenase Deficiency A disease-producing enzyme deficiency subject to many variants, some of which cause a deficiency of GLUCOSE-6-PHOSPHATE DEHYDROGENASE activity in erythrocytes, leading to hemolytic anemia. Deficiency of Glucose-6-Phosphate Dehydrogenase,Deficiency, GPD,Deficiency, Glucosephosphate Dehydrogenase,G6PD Deficiency,GPD Deficiency,Glucose 6 Phosphate Dehydrogenase Deficiency,Glucose-6-Phosphate Dehydrogenase Deficiency,Glucosephosphate Dehydrogenase Deficiencies,Hemolytic Anemia Due to G6PD Deficiency,Deficiencies, G6PD,Deficiencies, GPD,Deficiencies, Glucose-6-Phosphate Dehydrogenase,Deficiencies, Glucosephosphate Dehydrogenase,Deficiency of Glucose 6 Phosphate Dehydrogenase,Deficiency, G6PD,Deficiency, Glucose-6-Phosphate Dehydrogenase,Dehydrogenase Deficiencies, Glucose-6-Phosphate,Dehydrogenase Deficiencies, Glucosephosphate,Dehydrogenase Deficiency, Glucose-6-Phosphate,Dehydrogenase Deficiency, Glucosephosphate,G6PD Deficiencies,GPD Deficiencies,Glucose-6-Phosphate Dehydrogenase Deficiencies
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000634 Aminoquinolines Quinolines substituted in any position by one or more amino groups.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000962 Antimalarials Agents used in the treatment of malaria. They are usually classified on the basis of their action against plasmodia at different stages in their life cycle in the human. (From AMA, Drug Evaluations Annual, 1992, p1585) Anti-Malarial,Antimalarial,Antimalarial Agent,Antimalarial Drug,Anti-Malarials,Antimalarial Agents,Antimalarial Drugs,Agent, Antimalarial,Agents, Antimalarial,Anti Malarial,Anti Malarials,Drug, Antimalarial,Drugs, Antimalarial
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

A Strother, and I M Fraser, and R Allahyari, and B E Tilton
September 1976, Journal of medicinal chemistry,
A Strother, and I M Fraser, and R Allahyari, and B E Tilton
April 2018, European journal of medicinal chemistry,
A Strother, and I M Fraser, and R Allahyari, and B E Tilton
January 1995, Drug metabolism and disposition: the biological fate of chemicals,
A Strother, and I M Fraser, and R Allahyari, and B E Tilton
January 1995, Drug metabolism and disposition: the biological fate of chemicals,
A Strother, and I M Fraser, and R Allahyari, and B E Tilton
January 2011, Journal of medicinal chemistry,
A Strother, and I M Fraser, and R Allahyari, and B E Tilton
March 2015, Bioorganic & medicinal chemistry letters,
A Strother, and I M Fraser, and R Allahyari, and B E Tilton
January 1962, Bulletin of the World Health Organization,
A Strother, and I M Fraser, and R Allahyari, and B E Tilton
January 2016, EXCLI journal,
A Strother, and I M Fraser, and R Allahyari, and B E Tilton
March 2005, Bioorganic & medicinal chemistry,
A Strother, and I M Fraser, and R Allahyari, and B E Tilton
January 1981, Bulletin of the World Health Organization,
Copied contents to your clipboard!