Leukemic-like membrane properties acquired by B lymphocytes when depleted of 185,000-dalton macromolecular insoluble cold globulin. 1982

M A Simmonds, and G Sobczak, and S P Hauptman

Human peripheral blood lymphocytes can be phenotypically identified by the presence of one or both of two proteins, 225,000-dalton macromolecular insoluble cold globulin (225-MICG) and 185,000-dalton MICG (185-MICG). T cells synthesize and insert into their plasma membrane 225-MICG, null cells 185-MICG, and B cells both 225 and 185-MICG. In contrast, the monoclonal B cells of chronic lymphocytic leukemia are characterized by the presence of 225-MICG and the absence of 185-MICG. We have recently found it possible to chemically deplete 185-MICG from viable normal B cells by treating them with diisopropylfluorophosphate (DFP), thus making normal B cells phenotypically resemble leukemic cells. In the present report we determined whether certain peculiar properties of these leukemic cells would be associated with the normal B cells chemically depleted of 185-MICG. In normal B cells, SIg diffuses in the lipid bilayer to form clusters and caps under appropriate conditions, while in chronic lymphocytic leukemia (CLL) cells this does not occur. Normal B cells depleted of 185-MICG fail to undergo capping of SIg or surface MICG under appropriate conditions. Both DFP-treated B cells and CLL cells tend to rupture when smeared on a glass slide. Both CLL cells and DFP-treated B cells fail to secrete 225-MICG after it has been synthesized intracellularly. The relationship of these findings to the mechanisms of secretion and capping are discussed.

UI MeSH Term Description Entries
D007152 Immunologic Capping An energy dependent process following the crosslinking of B CELL ANTIGEN RECEPTORS by multivalent ligands (bivalent anti-antibodies, LECTINS or ANTIGENS), on the B-cell surface. The crosslinked ligand-antigen receptor complexes collect in patches which flow to and aggregate at one pole of the cell to form a large mass - the cap. The caps may then be endocytosed or shed into the environment. Capping, Immunologic,Immunological Capping,Capping, Immunological
D007531 Isoflurophate A di-isopropyl-fluorophosphate which is an irreversible cholinesterase inhibitor used to investigate the NERVOUS SYSTEM. DFP,Diisopropylfluorophosphate,Fluostigmine,Bis(1-methylethyl) Phosphorofluoridate,Di-isopropylphosphorofluoridate,Diisopropylphosphofluoridate,Dyflos,Floropryl,Fluorostigmine,Di isopropylphosphorofluoridate
D007945 Leukemia, Lymphoid Leukemia associated with HYPERPLASIA of the lymphoid tissues and increased numbers of circulating malignant LYMPHOCYTES and lymphoblasts. Leukemia, Lymphocytic,Lymphocytic Leukemia,Lymphoid Leukemia,Leukemias, Lymphocytic,Leukemias, Lymphoid,Lymphocytic Leukemias,Lymphoid Leukemias
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011947 Receptors, Antigen, B-Cell IMMUNOGLOBULINS on the surface of B-LYMPHOCYTES. Their MESSENGER RNA contains an EXON with a membrane spanning sequence, producing immunoglobulins in the form of type I transmembrane proteins as opposed to secreted immunoglobulins (ANTIBODIES) which do not contain the membrane spanning segment. Antigen Receptors, B-Cell,B-Cell Antigen Receptor,B-Cell Antigen Receptors,Surface Immunoglobulin,Immunoglobulins, Membrane-Bound,Immunoglobulins, Surface,Membrane Bound Immunoglobulin,Membrane-Bound Immunoglobulins,Receptors, Antigen, B Cell,Surface Immunoglobulins,Antigen Receptor, B-Cell,Antigen Receptors, B Cell,B Cell Antigen Receptor,B Cell Antigen Receptors,Bound Immunoglobulin, Membrane,Immunoglobulin, Membrane Bound,Immunoglobulin, Surface,Immunoglobulins, Membrane Bound,Membrane Bound Immunoglobulins,Receptor, B-Cell Antigen,Receptors, B-Cell Antigen
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

M A Simmonds, and G Sobczak, and S P Hauptman
November 1978, Nature,
M A Simmonds, and G Sobczak, and S P Hauptman
October 1980, Haematologica,
M A Simmonds, and G Sobczak, and S P Hauptman
January 1977, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
M A Simmonds, and G Sobczak, and S P Hauptman
September 1979, Journal of immunology (Baltimore, Md. : 1950),
M A Simmonds, and G Sobczak, and S P Hauptman
March 1983, Journal of immunology (Baltimore, Md. : 1950),
M A Simmonds, and G Sobczak, and S P Hauptman
December 1981, Journal of immunology (Baltimore, Md. : 1950),
M A Simmonds, and G Sobczak, and S P Hauptman
October 1980, Archives of surgery (Chicago, Ill. : 1960),
Copied contents to your clipboard!