Effects of 2.45 GHz microwave radiation and heat on mouse spermatogenic epithelium. 1981

R D Saunders, and C I Kowalczuk

The rear halves of the bodies of anaesthetized male C3H mice were exposed for 30 min to 2.45 GHz microwave radiation and the effects on the testes were compared to those produced by direct heating. Effects were observed which are consistent with the hypothesis that heat damage is the primary effect of microwave exposure. Damage measured six days after exposure ranged in severity from depletion of the spermatocytes to extensive necrosis of the germinal epithelium. Temperature-sensitive probes implanted in the testes revealed a threshold effect for depletion of the spermatocytes of approximately 39 degrees C and an LD50 6 (50 per cent cell death after 6 days) of about 41 degrees C after microwave exposure or direct heating. The corresponding effective threshold effect and LD50 6 expressed in terms of absorbed microwave power were 20 W kg-1 and 30 W kg-1. However, it is probable that a conscious animal is better able to regulate testicular temperature and hence adjust to higher dose-rates.

UI MeSH Term Description Entries
D007928 Lethal Dose 50 The dose amount of poisonous or toxic substance or dose of ionizing radiation required to kill 50% of the tested population. LD50,Dose 50, Lethal
D008297 Male Males
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008872 Microwaves That portion of the electromagnetic spectrum from the UHF (ultrahigh frequency) radio waves and extending into the INFRARED RAYS frequencies. EHF Waves,Extremely High Frequency Radio Waves,Micro Wave,Micro Waves,Ultrahigh Frequency Waves,Microwave Radiation,EHF Wave,Micro Waves,Microwave,Microwave Radiations,Radiation, Microwave,Ultrahigh Frequency Wave,Wave, EHF,Wave, Micro,Wave, Ultrahigh Frequency,Waves, Micro
D001831 Body Temperature The measure of the level of heat of a human or animal. Organ Temperature,Body Temperatures,Organ Temperatures,Temperature, Body,Temperature, Organ,Temperatures, Body,Temperatures, Organ
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms

Related Publications

R D Saunders, and C I Kowalczuk
January 1980, Bioelectromagnetics,
R D Saunders, and C I Kowalczuk
January 2024, The journal of international advanced otology,
R D Saunders, and C I Kowalczuk
January 1981, Radiation and environmental biophysics,
R D Saunders, and C I Kowalczuk
December 1981, Teratology,
R D Saunders, and C I Kowalczuk
January 1982, Bioelectromagnetics,
R D Saunders, and C I Kowalczuk
February 1975, Annals of the New York Academy of Sciences,
R D Saunders, and C I Kowalczuk
January 1988, Bioelectromagnetics,
R D Saunders, and C I Kowalczuk
July 2018, General physiology and biophysics,
Copied contents to your clipboard!