Acquired antibody to factor XI in a patient with congenital factor XI deficiency. 1982

D M Stern, and H L Nossel, and J Owen

The results of studies in a patient with congenital deficiency of Factor XI who developed an inhibitor are presented. The patient presented with a severe, apparently spontaneous bleed into the thigh, which progressed despite infusion of fresh frozen plasma, but which responded promptly to activated prothrombin complex. During therapy with plasma his clotting time and Factor XI level were unresponsive and a Factor XI inhibitor titer of 6,000 U/ml was attained. The inhibitor was isolated and found to be polyclonal immunoglobulin G (IgG), predominantly of subclass 4. The specificity of the antibodies for Factor XI was shown by the ability of isolated inhibitor bound to polyacrylamide beads to remove Factor XI selectively from normal plasma. The binding of (125)I-labeled factor XI to the inhibitor was studied and an affinity constant of 1.65 x 10(10) liter/mol was found. Complexing of the antibodies with Factor XI was shown to block multiple activities of the clotting factor. Factor XI complexed with antibody did not bind to high molecular weight kininogen or undergo activation and cleavage by two-chain Factor XII. The complex of activated Factor XI with inhibitor prevented the cleavage and activation of Factor IX. Hence the inhibitor appears to act by binding to multiple sites on the Factor XI molecule and preventing its interaction with other molecules. Clinically these interactions of the inhibitor with Factor XI result in a state of severe Factor XI deficiency. The clinical circumstances of the case, with severe hemorrhage refractory to plasma infusion but readily responsive to an alternate clot-promoting agent, suggest that a defect of intrinsic system activation was critical, supporting the inference that Factor XI does participate in normal hemostasis. The clinical course of this patient, who has only had two documented hemorrhages in the presence of the inhibitor, is not as severe as that of patients with severe Factor VIII or IX deficiency. This suggests that physiologic activation of Factors XI and IX does not occur exclusively in series because deficiency of factors XII, XI, VIII, and IX should then have similar hemostatic consequences. We propose that independent mechanisms for bypass of Factors XII and XI are important in physiologic activation of coagulation.

UI MeSH Term Description Entries
D007704 Kininogens Endogenous peptides present in most body fluids. Certain enzymes convert them to active KININS which are involved in inflammation, blood clotting, complement reactions, etc. Kininogens belong to the cystatin superfamily. They are cysteine proteinase inhibitors. HIGH-MOLECULAR-WEIGHT KININOGEN; (HMWK); is split by plasma kallikrein to produce BRADYKININ. LOW-MOLECULAR-WEIGHT KININOGEN; (LMWK); is split by tissue kallikrein to produce KALLIDIN. Cystatins, Kininogen,Kininogen,Prekinins,Prokinins,T-Kininogen,Thiostatin,Kininogen Cystatins,T Kininogen
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001780 Blood Coagulation Tests Laboratory tests for evaluating the individual's clotting mechanism. Coagulation Tests, Blood,Tests, Blood Coagulation,Blood Coagulation Test,Coagulation Test, Blood,Test, Blood Coagulation
D005164 Factor IX Storage-stable blood coagulation factor acting in the intrinsic pathway of blood coagulation. Its activated form, IXa, forms a complex with factor VIII and calcium on platelet factor 3 to activate factor X to Xa. Deficiency of factor IX results in HEMOPHILIA B (Christmas Disease). Autoprothrombin II,Christmas Factor,Coagulation Factor IX,Plasma Thromboplastin Component,Blood Coagulation Factor IX,Factor 9,Factor IX Complex,Factor IX Fraction,Factor Nine,Factor IX, Coagulation
D005172 Factor XI Stable blood coagulation factor involved in the intrinsic pathway. The activated form XIa activates factor IX to IXa. Deficiency of factor XI is often called hemophilia C. Coagulation Factor XI,Plasma Thromboplastin Antecedent,Blood Coagulation Factor XI,Factor 11,Factor Eleven,Antecedent, Plasma Thromboplastin,Factor XI, Coagulation,Thromboplastin Antecedent, Plasma
D005173 Factor XI Deficiency A hereditary deficiency of blood coagulation factor XI (also known as plasma thromboplastin antecedent or PTA or antihemophilic factor C) resulting in a systemic blood-clotting defect called hemophilia C or Rosenthal's syndrome, that may resemble classical hemophilia. Hemophilia C,Rosenthal Syndrome,Deficiency, Factor 11,Deficiency, Factor Eleven,Deficiency, Factor XI,Factor 11 Deficiency,Factor Eleven Deficiency,Plasma Thromboplastin Antecedent Deficiency,Rosenthal's Syndrome,Deficiencies, Factor 11,Deficiencies, Factor Eleven,Deficiencies, Factor XI,Factor 11 Deficiencies,Factor Eleven Deficiencies,Factor XI Deficiencies,Rosenthal Syndromes,Rosenthal's Syndromes,Rosenthals Syndrome,Syndrome, Rosenthal,Syndrome, Rosenthal's
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

D M Stern, and H L Nossel, and J Owen
May 1993, British journal of haematology,
D M Stern, and H L Nossel, and J Owen
July 1984, Thrombosis and haemostasis,
D M Stern, and H L Nossel, and J Owen
January 1998, Ryoikibetsu shokogun shirizu,
D M Stern, and H L Nossel, and J Owen
July 2012, Pediatric blood & cancer,
D M Stern, and H L Nossel, and J Owen
August 1991, Annals of hematology,
D M Stern, and H L Nossel, and J Owen
September 1985, [Rinsho ketsueki] The Japanese journal of clinical hematology,
D M Stern, and H L Nossel, and J Owen
February 2012, The American surgeon,
D M Stern, and H L Nossel, and J Owen
August 1984, [Rinsho ketsueki] The Japanese journal of clinical hematology,
Copied contents to your clipboard!