Internal and external differentiations of the postsynaptic membrane at the neuromuscular junction. 1982

N Hirokawa, and J E Heuser

Frog, snake and rat neuromuscular junctions were prepared for electron microscopy by the quick-freeze, deep-etch, rotary replication procedure. The postsynaptic membrane was exposed by treating muscles with 1 mg/ml collagenase to remove the basal lamina. Present on the apices of the postsynaptic folds are regular arrays of 8-9 nm protrusions. These are not seen in the depths of the folds nor elsewhere on the muscle surface, thus they presumably represent the heads of cholinergic receptor molecules. These protrusions tend to be arranged in parallel rows two-abreast. Their high concentration (10 000/microns2) and their orderly arrangement is basically similar to the receptors seen in Torpedo postsynaptic membrane. Their distribution did not appear to change after denervation. Efforts were made to expose possible anchoring structures of these receptors, by treating muscles with 0.1% Saponin immediately before and/or during fixation in 1% formaldehyde, or by homogenizing muscles after brief formaldehyde fixation. This washed most soluble protein out of the cytoplasm and exposed a submembraneous meshwork just beneath the postsynaptic membrane. This meshwork appears to connect the membrane to underlying bundles of intermediate filaments which course through the postsynaptic processes that border each fold. This meshwork is presumably equivalent to the postsynaptic 'density' seen in thin sections. Its three-dimensional structure suggests that it could anchor receptor molecules to underlying cytoskeletal elements and thus immobilize receptors in the plane of the postsynaptic membrane.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009121 Muscle Denervation The resection or removal of the innervation of a muscle or muscle tissue. Denervation, Muscle,Denervations, Muscle,Muscle Denervations
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D005613 Freeze Etching A replica technique in which cells are frozen to a very low temperature and cracked with a knife blade to expose the interior surfaces of the cells or cell membranes. The cracked cell surfaces are then freeze-dried to expose their constituents. The surfaces are now ready for shadowing to be viewed using an electron microscope. This method differs from freeze-fracturing in that no cryoprotectant is used and, thus, allows for the sublimation of water during the freeze-drying process to etch the surfaces. Etching, Freeze
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012911 Snakes Limbless REPTILES of the suborder Serpentes. Serpentes,Ophidia,Snake
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013570 Synaptic Membranes Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters. Membrane, Synaptic,Membranes, Synaptic,Synaptic Membrane

Related Publications

N Hirokawa, and J E Heuser
February 2006, Current opinion in neurobiology,
N Hirokawa, and J E Heuser
April 2000, Microscopy research and technique,
N Hirokawa, and J E Heuser
January 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience,
N Hirokawa, and J E Heuser
April 2006, Current biology : CB,
N Hirokawa, and J E Heuser
February 2006, Journal of neurobiology,
N Hirokawa, and J E Heuser
November 1993, Neuroscience,
N Hirokawa, and J E Heuser
December 1991, Brain research,
N Hirokawa, and J E Heuser
January 2003, Journal of neurocytology,
Copied contents to your clipboard!