Mechanism of neuromuscular block by streptomycin: a voltage clamp analysis. 1982

J M Farley, and C H Wu, and T Narahashi

The effects of streptomycin on neuromuscular transmission were investigated on frog cutaneous pectoris muscles. The half-inhibition doses of peak end-plate current amplitude are 3 x 10(-5) and 8.5 x 10(-5) M in the presence of 0.9 and 1.8 mM extracellular calcium, respectively. The quantal content of the end-plate current was reduced by 50% in the presence of 3 x 10(-5) M streptomycin in Ringer's solution containing 0.35 mM Ca and 2 mM Mg. Miniature end-plate currents under these conditions were reduced by only 20%, suggesting that the presynaptic blocking action predominates over the postsynaptic action. A much higher concentration of streptomycin (3.5 x 10(-4) M) was required to achieve 50% block of peak transient depolarizations induced by iontophoretic application of acetylcholine. The postsynaptic action involves primarily a blocking action on acetylcholine receptors since the drug did not alter the linearity of current-voltage relationship for end-plate currents at membrane potentials more positive than -50 mV. An additional weak blocking action on the acetylcholine-activated channels exhibited a slight voltage and concentration dependence, giving rise to a slight prolongation of the end-plate current and curvature of the current-voltage relation at membrane potentials more negative than -50 mV. Thus, under normal conditions the predominant action of streptomycin at the neuromuscular junction is to reduce transmitter release. A secondary competitive inhibition on the acetylcholine receptor and a weak blocking action on the ionic channels may also contribute to the overall block.

UI MeSH Term Description Entries
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013307 Streptomycin An antibiotic produced by the soil actinomycete Streptomyces griseus. It acts by inhibiting the initiation and elongation processes during protein synthesis. Estreptomicina CEPA,Estreptomicina Clariana,Estreptomicina Normon,Strepto-Fatol,Strepto-Hefa,Streptomycin GrĂ¼nenthal,Streptomycin Sulfate,Streptomycin Sulfate (2:3) Salt,Streptomycin Sulphate,Streptomycine Panpharma,Strepto Fatol,Strepto Hefa
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

J M Farley, and C H Wu, and T Narahashi
August 1982, Yao xue xue bao = Acta pharmaceutica Sinica,
J M Farley, and C H Wu, and T Narahashi
February 1973, Archives internationales de pharmacodynamie et de therapie,
J M Farley, and C H Wu, and T Narahashi
July 1966, Polski tygodnik lekarski (Warsaw, Poland : 1960),
J M Farley, and C H Wu, and T Narahashi
September 2010, Cold Spring Harbor protocols,
J M Farley, and C H Wu, and T Narahashi
March 2024, Cold Spring Harbor protocols,
J M Farley, and C H Wu, and T Narahashi
August 1982, Biophysical journal,
J M Farley, and C H Wu, and T Narahashi
February 1961, British medical journal,
J M Farley, and C H Wu, and T Narahashi
December 1973, The Journal of physiology,
J M Farley, and C H Wu, and T Narahashi
August 1994, Acta anaesthesiologica Scandinavica,
J M Farley, and C H Wu, and T Narahashi
March 1982, The Journal of cell biology,
Copied contents to your clipboard!