Extrahypothalamic distribution of CRF-like immunoreactivity in the rat brain. 1982

A J Fischman, and R L Moldow

CRF-like immunoreactivity was measured by radioimmunoassay in the brains of normal adult rats and found to be widely distributed in extrahypothalamic areas (e.g., thalamus, amygdala, hippocampus, frontal cerebral cortex, striatum, midbrain, pons-medulla and cerebellum) at levels approximately 10% of the hypothalamus. Sephadex G-50 gel filtration reveals that CRF-like immunoreactivity in the hypothalamus coelutes with synthetic ovine CRF and is also present in the void volume. However, in the extrahypothalamic areas of the rat brain, only CRF-like immunoreactivity that coelutes with synthetic ovine CRF was detected. High performance liquid chromatography revealed equal amounts of immunoreactivity coeluting with CRF and methionine sulfoxide CRF in hypothalamic extracts.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008297 Male Males
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

A J Fischman, and R L Moldow
January 1988, Peptides,
A J Fischman, and R L Moldow
August 1993, The Journal of comparative neurology,
A J Fischman, and R L Moldow
December 1993, Neuroendocrinology,
A J Fischman, and R L Moldow
January 2006, Journal of molecular neuroscience : MN,
A J Fischman, and R L Moldow
November 1980, Acta physiologica Scandinavica,
A J Fischman, and R L Moldow
April 1978, Histochemistry,
Copied contents to your clipboard!