Rhodopsin-to-metarhodopsin II transition triggers amplified changes in cytosol ATP and ADP in intact retinal rod outer segments. 1982

R Zuckerman, and G J Schmidt, and S M Dacko

We have observed rapid, light-initiated changes in unbound cytosol ATP and ADP during the rhodopsin-to-metarhodopsin II transition in intact rod outer segments (ROS). Upon illumination of the ROS, ATP is rapidly removed from the unbound phase of ROS, accompanied by the concomitant release of ADP into the cytosol. The exchange process involves decreases of approximately equal to 0.5 mM ATP in ROS cytosol ATP content in response to a saturating flash. At levels of light well below saturation (less than 0.001% bleach), the process is highly amplified, with a decrease in cytosol ATP of approximately equal to 2,000 ATP molecules per absorbed photon per ROS. Rapid time-resolution techniques reveal that cytosol ATP content decreases rapidly, within 250 msec of a saturating flash. Bleaching rhodopsin to metarhodopsin II results in a decrease in cytosol ATP, accompanied by an increase in cytosol ADP, whereas photoreversal of metarhodopsin II by a blue flash reverses the process, increasing ATP concentration to its control level in the dark. The photoreversibility of the ATP decrease during the rhodopsin-to-metarhodopsin II transition establishes a direct link between the state of an early intermediate of photolyzed rhodopsin and the state of a nucleoside triphosphate in intact ROS. The results are consistent with a light-activated exchange of unbound ATP for bound ADP, and we propose, therefore, an ATP/ADP amplification cycle in which metarhodopsin II catalyzes the exchange of ATP for ADP on a nucleotide binding protein.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012168 Retinal Pigments Photosensitive protein complexes of varied light absorption properties which are expressed in the PHOTORECEPTOR CELLS. They are OPSINS conjugated with VITAMIN A-based chromophores. Chromophores capture photons of light, leading to the activation of opsins and a biochemical cascade that ultimately excites the photoreceptor cells. Retinal Photoreceptor Pigment,Retinal Pigment,Visual Pigment,Visual Pigments,Retinal Photoreceptor Pigments,Photoreceptor Pigment, Retinal,Photoreceptor Pigments, Retinal,Pigment, Retinal,Pigment, Retinal Photoreceptor,Pigment, Visual,Pigments, Retinal,Pigments, Retinal Photoreceptor,Pigments, Visual
D012243 Rhodopsin A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm. Visual Purple

Related Publications

R Zuckerman, and G J Schmidt, and S M Dacko
July 1982, Biochemistry,
R Zuckerman, and G J Schmidt, and S M Dacko
September 1996, Investigative ophthalmology & visual science,
R Zuckerman, and G J Schmidt, and S M Dacko
September 1974, Nature,
R Zuckerman, and G J Schmidt, and S M Dacko
June 1977, Experimental eye research,
R Zuckerman, and G J Schmidt, and S M Dacko
June 1978, Histochemistry,
R Zuckerman, and G J Schmidt, and S M Dacko
January 1987, Vision research,
R Zuckerman, and G J Schmidt, and S M Dacko
October 1977, The Journal of physiology,
R Zuckerman, and G J Schmidt, and S M Dacko
January 1998, Physiological research,
R Zuckerman, and G J Schmidt, and S M Dacko
February 1982, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!