Humoral and cell-mediated immune responses in fully allogeneic bone marrow chimera in mice. 1980

K Onoé, and G Fernandes, and R A Good

AKR mice were protected from lethal irradiation and established as long-lived chimeras by transplanting allogeneic C57BL/6 (B6) bone marrow that had been treated in vitro with anti-Thy-1 antiserum without complement. In these chimeras, which were designated [B6 {arrow} AKR], virtually all the thymus and spleen cells were shown to be derived from the B6 donor; several immune functions studied in these chimeras were as follows: (a) The chimeric mice were tolerant of histocompatibility antigens of both donor and recipient strain and nearly fully reactive to antigens of third party, as revealed by Simonsen's splenomegaly assay. The tolerance of these chimeras could not be attributed to suppressor cells but was compatible with clonal depletion. (b) Proliferative responses to concanavalin A, phytohemagglutinin, and lipopolysaccharide as well as natural killer and antibody-dependent cell- mediated cytotoxicity activity of the chimeric mice was normal. (c) Plaque- forming cell (PFC) assays of antibody responses to sheep erythrocytes (SRBC) showed gross deficiency in the primary response of the [B6 {arrow} AKR] and [AKR {arrow} B6] chimeras. By contrast, [B6-H-2(k)(E(k)) {arrow} AKR] H-2-compatible chimeras and [AKR {arrow} AKR] syngeneic marrow transplanted mice had normal primary PFC responses. PFC responses after secondary stimulation with SRBC, however, revealed vigorous direct plaque formation and substantial but somewhat smaller indirect plaque formation in the [B6 {arrow} AKR] chimeras. This observation favors operationally the concept of adaptive differentiation proposed by Katz et al. (44). (d) Analysis of ability of the chimeras to develop and express delayed-type hypersensitivity responses to contact sensitizer (2,4-dinitro-l-fluorobenzene [DNFB]) showed no apparent immunodeficiency of either chimeras to this form of immunization. Development of immunologic tolerance to DNFB, however, was grossly deficient in [B6 {arrow} AKR] chimeras but normal in [AKR {arrow} AKR], [B6 {arrow} B6], and [E(k) {arrow} AKR] chimeras. These findings indicate that full chimeras across major histocompatibility complex have considerable immunologic vigor even though primary immune responses that require histocompatibility between interacting cell types are initially defective.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D008806 Mice, Inbred AKR An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mice, AKR,Mouse, AKR,Mouse, Inbred AKR,AKR Mice,AKR Mice, Inbred,AKR Mouse,AKR Mouse, Inbred,Inbred AKR Mice,Inbred AKR Mouse
D008934 Mitogens Substances that stimulate mitosis and lymphocyte transformation. They include not only substances associated with LECTINS, but also substances from streptococci (associated with streptolysin S) and from strains of alpha-toxin-producing staphylococci. (Stedman, 25th ed) Mitogen,Phytomitogen,Phytomitogens
D002678 Chimera An individual that contains cell populations derived from different zygotes. Hybrids,Chimeras,Hybrid
D004139 Dinitrofluorobenzene Irritants and reagents for labeling terminal amino acid groups. DNFB,Fluorodinitrobenzene,1-Fluoro-2,4-dinitrobenzene,1 Fluoro 2,4 dinitrobenzene
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody
D000920 Antibody-Dependent Cell Cytotoxicity The phenomenon of antibody-mediated target cell destruction by non-sensitized effector cells. The identity of the target cell varies, but it must possess surface IMMUNOGLOBULIN G whose Fc portion is intact. The effector cell is a "killer" cell possessing Fc receptors. It may be a lymphocyte lacking conventional B- or T-cell markers, or a monocyte, macrophage, or polynuclear leukocyte, depending on the identity of the target cell. The reaction is complement-independent. ADCC,Cytotoxicity, Antibody-Dependent Cell,Cell Cytoxicity, Antibody-Dependent,Antibody Dependent Cell Cytotoxicity,Antibody-Dependent Cell Cytotoxicities,Antibody-Dependent Cell Cytoxicities,Antibody-Dependent Cell Cytoxicity,Cell Cytotoxicities, Antibody-Dependent,Cell Cytotoxicity, Antibody-Dependent,Cell Cytoxicities, Antibody-Dependent,Cell Cytoxicity, Antibody Dependent,Cytotoxicities, Antibody-Dependent Cell,Cytotoxicity, Antibody Dependent Cell,Cytoxicities, Antibody-Dependent Cell,Cytoxicity, Antibody-Dependent Cell
D012397 Rosette Formation The in vitro formation of clusters consisting of a cell (usually a lymphocyte) surrounded by antigenic cells or antigen-bearing particles (usually erythrocytes, which may or may not be coated with antibody or antibody and complement). The rosette-forming cell may be an antibody-forming cell, a memory cell, a T-cell, a cell bearing surface cytophilic antibodies, or a monocyte possessing Fc receptors. Rosette formation can be used to identify specific populations of these cells. Immunocytoadherence,Formation, Rosette,Formations, Rosette,Immunocytoadherences,Rosette Formations

Related Publications

K Onoé, and G Fernandes, and R A Good
June 1984, Asian Pacific journal of allergy and immunology,
K Onoé, and G Fernandes, and R A Good
November 1991, Journal of immunology (Baltimore, Md. : 1950),
K Onoé, and G Fernandes, and R A Good
May 1981, Clinical immunology and immunopathology,
K Onoé, and G Fernandes, and R A Good
October 1989, Immunology and cell biology,
K Onoé, and G Fernandes, and R A Good
October 1975, Experientia,
K Onoé, and G Fernandes, and R A Good
December 1987, Journal of medical virology,
K Onoé, and G Fernandes, and R A Good
June 1986, Journal of immunology (Baltimore, Md. : 1950),
K Onoé, and G Fernandes, and R A Good
December 1980, Indian journal of experimental biology,
K Onoé, and G Fernandes, and R A Good
March 1994, The Southeast Asian journal of tropical medicine and public health,
Copied contents to your clipboard!