The stimulus-secretion coupling of glucose-induced insulin release. Metabolism of glucose in K+-deprived islets. 1980

A Sener, and S Kawazu, and W J Malaisse

1. When pancreatic islets were exposed to a K(+)-free medium, the intracellular concentration of K(+) was decreased and that of Na(+) increased. 2. In the K(+)-deprived islets, the utilization of [5-(3)H]glucose, output of lactic acid and oxidation of [U-(14)C]-glucose were decreased by about 30-40% below the control values found at normal extracellular K(+) concentration (5.0mm). However, the oxidation of [U-(14)C]pyruvate was unaffected. 3. The omission of extracellular K(+) little affected the production of (14)CO(2) from islets prelabelled with [U-(14)C]palmitate and incubated in the absence of glucose, despite the fact that K(+) deprivation significantly increased the ATP concentration and ATP/ADP concentration ratio in the glucose-deprived islets. 4. At normal K(+) concentration, glucose increased the concentrations of phosphoenolpyruvate, NAD(P)H and ATP in the islets. In the glucose-stimulated islets, the concentration of phosphoenolpyruvate, but not that of either NAD(P)H or ATP, was higher in the absence than in the presence of extracellular K(+). In islet homogenates, the activity of pyruvate kinase (EC 2.7.1.40) was stimulated by K(+) (optimal activity at 100-150mm-K(+)) and inhibited by Na(+) (except at very low K(+) concentrations). 5. K(+) could be replaced by NH(4) (+), Rb(+), Cs(+) or Na(+) to maintain, at least to some extent, pyruvate kinase activity in islet homogenates. Addition of Rb(+) or Cs(+), but not NH(4) (+), to K(+)-deprived media also increased [U-(14)C]glucose oxidation by intact islets. 6. The omission of K(+) did not cause any obvious anomaly in the apparent dependency of (45)Ca(2+) net uptake on NAD(P)H concentration in the islets. 7. These data suggest that the coupling between metabolic and ionic events in the islet cells involves feedback mechanisms through which glucose oxidation may be modulated by cationic factors.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010728 Phosphoenolpyruvate A monocarboxylic acid anion derived from selective deprotonation of the carboxy group of phosphoenolpyruvic acid. It is a metabolic intermediate in GLYCOLYSIS; GLUCONEOGENESIS; and other pathways.
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011770 Pyruvate Kinase ATP:pyruvate 2-O-phosphotransferase. A phosphotransferase that catalyzes reversibly the phosphorylation of pyruvate to phosphoenolpyruvate in the presence of ATP. It has four isozymes (L, R, M1, and M2). Deficiency of the enzyme results in hemolytic anemia. EC 2.7.1.40. L-Type Pyruvate Kinase,M-Type Pyruvate Kinase,M1-Type Pyruvate Kinase,M2-Type Pyruvate Kinase,Pyruvate Kinase L,R-Type Pyruvate Kinase,L Type Pyruvate Kinase,M Type Pyruvate Kinase,M1 Type Pyruvate Kinase,M2 Type Pyruvate Kinase,Pyruvate Kinase, L-Type,Pyruvate Kinase, M-Type,Pyruvate Kinase, M1-Type,Pyruvate Kinase, M2-Type,Pyruvate Kinase, R-Type,R Type Pyruvate Kinase
D002414 Cations, Monovalent Positively charged atoms, radicals or group of atoms with a valence of plus 1, which travel to the cathode or negative pole during electrolysis. Monovalent Cation,Cation, Monovalent,Monovalent Cations
D005260 Female Females

Related Publications

A Sener, and S Kawazu, and W J Malaisse
September 1974, European journal of biochemistry,
A Sener, and S Kawazu, and W J Malaisse
November 1981, Archives of biochemistry and biophysics,
A Sener, and S Kawazu, and W J Malaisse
March 1978, Pflugers Archiv : European journal of physiology,
A Sener, and S Kawazu, and W J Malaisse
October 1976, The Journal of biological chemistry,
A Sener, and S Kawazu, and W J Malaisse
July 1978, Pflugers Archiv : European journal of physiology,
A Sener, and S Kawazu, and W J Malaisse
February 1979, The American journal of physiology,
A Sener, and S Kawazu, and W J Malaisse
February 1984, Archives of biochemistry and biophysics,
Copied contents to your clipboard!