The glutaminyl-transfer RNA synthetase of Escherichia coli. Purification, structure and function relationship. 1980

D Kern, and S Potier, and J Lapointe, and Y Boulanger

Glutaminyl-tRNA synthetase from Escherichia coli has been purified to homogeneity with a yield of about 50%. It is a monomer of about 69 000 daltons. Arginyl and glutamyl-tRNA synthetases are also monomeric synthetases of molecular weight significantly lower than 100 000. In addition it is well known that these three synthetases require their cognate tRNA to catalyze the [32P]PPi-ATP exchange. Like arginyl-tRNA synthetase, but unlike glutamyl-tRNA synthetase, glutaminyl-tRNA synthetase seems to contain some repeated sequences. Therefore no correlation can be established between the tRNA requirement of these synthetases for the catalysis of the isotope-exchange and the presence or the absence of sequence duplication. In the native enzyme four sulfhydryl groups react with dithiobisnitrobenzoic acid causing a loss of both the aminoacylation and the [32P]PPi-ATP exchange activities. The rate-limiting steps of the overall aminoacylation and its reverse reaction correspond, respectively, to the catalysis of the aminoacylation of tRNA Gln and of the the deacylation of glutaminyl-tRNA Gln. At acidic pH, glutaminyl-tRNA synthetase catalyzes the synthesis of the glutaminyl-tRNA Gln and its deacylation at significantly lower rates than the [32P]PPi-ATP exchange, indicating than glutaminyl-tRNA Gln cannot be an obligatory intermediate in this isotope exchange. These results suggest the existence of a two-step aminoacylation mechanism catalyzed by this enzyme.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D005975 Glutamate-tRNA Ligase An enzyme that activates glutamic acid with its specific transfer RNA. EC 6.1.1.17. Glutamyl T RNA Synthetase,Glu-tRNA Ligase,Glutamyl-tRNA Synthetase,Glu tRNA Ligase,Glutamate tRNA Ligase,Glutamyl tRNA Synthetase,Ligase, Glu-tRNA,Ligase, Glutamate-tRNA,Synthetase, Glutamyl-tRNA
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D013095 Spermidine A polyamine formed from putrescine. It is found in almost all tissues in association with nucleic acids. It is found as a cation at all pH values, and is thought to help stabilize some membranes and nucleic acid structures. It is a precursor of spermine.
D013438 Sulfhydryl Compounds Compounds containing the -SH radical. Mercaptan,Mercapto Compounds,Sulfhydryl Compound,Thiol,Thiols,Mercaptans,Compound, Sulfhydryl,Compounds, Mercapto,Compounds, Sulfhydryl

Related Publications

D Kern, and S Potier, and J Lapointe, and Y Boulanger
August 1993, Biochemistry,
D Kern, and S Potier, and J Lapointe, and Y Boulanger
August 1984, Proceedings of the National Academy of Sciences of the United States of America,
D Kern, and S Potier, and J Lapointe, and Y Boulanger
January 1983, Nucleic acids symposium series,
D Kern, and S Potier, and J Lapointe, and Y Boulanger
January 1985, Methods in enzymology,
D Kern, and S Potier, and J Lapointe, and Y Boulanger
April 1968, European journal of biochemistry,
D Kern, and S Potier, and J Lapointe, and Y Boulanger
April 1980, Biochemistry,
D Kern, and S Potier, and J Lapointe, and Y Boulanger
July 1964, Archives of biochemistry and biophysics,
D Kern, and S Potier, and J Lapointe, and Y Boulanger
April 1970, Journal of molecular biology,
D Kern, and S Potier, and J Lapointe, and Y Boulanger
March 1970, The Journal of biological chemistry,
D Kern, and S Potier, and J Lapointe, and Y Boulanger
November 1972, Journal of molecular biology,
Copied contents to your clipboard!