Penetration of colicin M into cells of Escherichia coli. 1980

V Braun, and J Frenz, and K Hantke, and K Schaller

A new class of colicin M-tolerant mutants of Escherichia coli K-12 was isolated. The mutants exhibited an unusually high tolerance in that they were unaffected by colicin titers of 10(6). The tolerance was confined to colicin M. It was mapped at a locus called tolM, which is close to rpsL. The following gene order was determined: aroE, tolM, rpsL, cysG. The tolerance could be caused by a defect in the uptake of colicin M or by a mutation at the site of action. Insensitive tonA and tonB mutants became sensitive to colicin M upon treatment by osmotic shock, whereas the tolM mutants remained insensitive. Trypsin rescue experiments showed that the tonB-dependent uptake of colicin M required energy like the other tonB-related transport processes. When bound to energy-depleted cells, colicin M prevented adsorption of phage T5. The receptor became accessible to the phage when the cells were energized, except in tonB mutants. These data suggest that the function controlled by the tonB gene is required for the translocation of colicin M from its initial binding site at the tonA-coded receptor protein to the target.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D003087 Colicins Bacteriocins elaborated by strains of Escherichia coli and related species. They are proteins or protein-lipopolysaccharide complexes lethal to other strains of the same species. Colicin,Colicin E9,Colicine,Colicines,Colicin A,Colicin B,Colicin E,Colicin E1,Colicin E2,Colicin E3,Colicin E8,Colicin HSC10,Colicin Ia,Colicin Ib,Colicin K,Colicin K-K235,Colicin M,Colicin N,Colicin V,Colicins E,Colicins E9,Precolicin E1,Colicin K K235,E9, Colicin
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000091243 Ribosomal Protein S9 It is a protein that encodes a RIBOSOMAL PROTEIN which is a component of the 40S subunit. It belongs to the S4P family of ribosomal proteins. S9 Ribosomal Protein,Protein S9, Ribosomal,Protein, S9 Ribosomal,S9, Ribosomal Protein
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin

Related Publications

V Braun, and J Frenz, and K Hantke, and K Schaller
October 1998, Journal of bacteriology,
V Braun, and J Frenz, and K Hantke, and K Schaller
July 1981, Journal of bacteriology,
V Braun, and J Frenz, and K Hantke, and K Schaller
January 1987, Acta microbiologica Polonica,
V Braun, and J Frenz, and K Hantke, and K Schaller
February 2013, BMC microbiology,
V Braun, and J Frenz, and K Hantke, and K Schaller
December 2012, Biochemical Society transactions,
V Braun, and J Frenz, and K Hantke, and K Schaller
September 2008, The Journal of biological chemistry,
V Braun, and J Frenz, and K Hantke, and K Schaller
February 1990, Journal of bacteriology,
V Braun, and J Frenz, and K Hantke, and K Schaller
July 1968, Journal of biochemistry,
V Braun, and J Frenz, and K Hantke, and K Schaller
January 1972, Annales immunologiae Hungaricae,
V Braun, and J Frenz, and K Hantke, and K Schaller
July 1981, Journal of bacteriology,
Copied contents to your clipboard!