Efficient in vitro replication of double-stranded DNA templates by a purified T4 bacteriophage replication system. 1980

N K Sinha, and C F Morris, and B M Alberts

A wide variety of double-stranded DNA templates are replicated extensively in an in vitro DNA replication system containing the purified proteins specified by seven T4 bacteriophage DNA replication genes (32, 41, 43, 44, 62, 45, and 61). In favorable conditions, this multiprotein system catalyzes the synthesis of several copies of the input DNA template in a 30- to 60-min incubation. The replication forks produced in vitro move in a highly processive fashion, at approximately the in vivo rate of 500 nucleotides per s. The DNA synthesized on the lagging side of the in vitro replication fork is made discontinuously, as it is in vivo, giving rise to "Okazaki pieces" averaging some 10,000 nucleotides in length; in contrast, DNA is polymerized in a continuous manner on the leading side of the in vitro fork. Although the mechanism by which the seven-protein in vitro DNA replication system propagates replication forks closely resembles the in vivo mechanism, it lacks the capacity to remove RNA primers, to reseal Okazaki pieces, and to initiate replication forks at defined DNA origins; supplementation of the system with additional T4-specific replication proteins will be required to facilitate these latter three functions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral

Related Publications

N K Sinha, and C F Morris, and B M Alberts
June 1985, Proceedings of the National Academy of Sciences of the United States of America,
N K Sinha, and C F Morris, and B M Alberts
October 1989, The Journal of biological chemistry,
N K Sinha, and C F Morris, and B M Alberts
November 1991, Journal of molecular biology,
N K Sinha, and C F Morris, and B M Alberts
January 1983, Cold Spring Harbor symposia on quantitative biology,
N K Sinha, and C F Morris, and B M Alberts
January 1979, Cold Spring Harbor symposia on quantitative biology,
N K Sinha, and C F Morris, and B M Alberts
October 1984, The Journal of biological chemistry,
N K Sinha, and C F Morris, and B M Alberts
June 2006, CSH protocols,
N K Sinha, and C F Morris, and B M Alberts
August 1976, Journal of virology,
N K Sinha, and C F Morris, and B M Alberts
December 1995, Journal of bacteriology,
Copied contents to your clipboard!