Benzo(a)pyrene hydroxylase from Saccharomyces cerevisiae. Substrate binding, spectral and kinetic data. 1980

L F Woods, and A Wiseman

Saccharomyces cerevisiae, brewer's yeast, produces a microsomal benzo(a)pyrene hydroxylase when grown at high glucose concentrations of which the haemoprotein, cytochrome P-450 (RH, reduced-flavoprotein:oxygen oxidoreductase (RH-hydroxylating) EC 1.14.14.1) is a component. We report here kinetic data derived from Lineweaver-Burk plots of benzo(a)pyrene hydroxylation. The Michaelis constant was decreased by growth of the yeast in the presence of benzo(a)pyrene showing the induction of a form of the enzyme more specific for this compound. NADPH or cumene hydroperoxide could be used as cofactors by this enzyme, although with different Km and V values for benzo(a)pyrene. A solubilised and a solubilised, immobilised enzyme preparation were capable of benzo(a)pyrene hydroxylation, using cumene hydroperoxide but not NADPH as the cofactor. Benzo(a)pyrene was found to produce a modified type I spectral change with yeast and rat liver microsomes. The interaction of benzo(a)pyrene with cytochrome P-450 was investigated further by means of an equilibrium gel filtration technique. There appeared to be 20 binding sites per mol ofcytochrome P-450 for benz(a)pyrene, in both yeast and rat liver microsomes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010545 Peroxides A group of compounds that contain a bivalent O-O group, i.e., the oxygen atoms are univalent. They can either be inorganic or organic in nature. Such compounds release atomic (nascent) oxygen readily. Thus they are strong oxidizing agents and fire hazards when in contact with combustible materials, especially under high-temperature conditions. The chief industrial uses of peroxides are as oxidizing agents, bleaching agents, and initiators of polymerization. (From Hawley's Condensed Chemical Dictionary, 11th ed) Peroxide
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001189 Aryl Hydrocarbon Hydroxylases A large group of cytochrome P-450 (heme-thiolate) monooxygenases that complex with NAD(P)H-FLAVIN OXIDOREDUCTASE in numerous mixed-function oxidations of aromatic compounds. They catalyze hydroxylation of a broad spectrum of substrates and are important in the metabolism of steroids, drugs, and toxins such as PHENOBARBITAL, carcinogens, and insecticides. Microsomal Monooxygenases,Xenobiotic Monooxygenases,Hydroxylases, Aryl Hydrocarbon,Monooxygenases, Microsomal,Monooxygenases, Xenobiotic
D001555 Benzene Derivatives Organic compounds derived from BENZENE. Derivatives, Benzene
D001579 Benzopyrene Hydroxylase A drug-metabolizing, cytochrome P-448 (P-450) enzyme which catalyzes the hydroxylation of benzopyrene to 3-hydroxybenzopyrene in the presence of reduced flavoprotein and molecular oxygen. Also acts on certain anthracene derivatives. An aspect of EC 1.14.14.1. Benzopyrene-3-Monooxygenase,Benzo(a)pyrene Hydroxylase,Benzo(a)pyrene Monooxygenase,Benzopyrene 3 Monooxygenase,Hydroxylase, Benzopyrene

Related Publications

L F Woods, and A Wiseman
April 1982, Biochemical and biophysical research communications,
L F Woods, and A Wiseman
January 1984, Xenobiotica; the fate of foreign compounds in biological systems,
L F Woods, and A Wiseman
November 1967, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
L F Woods, and A Wiseman
June 1973, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
L F Woods, and A Wiseman
December 1999, Biochemical and biophysical research communications,
L F Woods, and A Wiseman
September 1983, Molecular pharmacology,
L F Woods, and A Wiseman
July 1983, Biulleten' eksperimental'noi biologii i meditsiny,
Copied contents to your clipboard!