Importance of renal sympathetic tone in the development of DOCA-salt hypertension in the rat. 1980

R E Katholi, and A J Naftilan, and S Oparil

In many experimental models, acute increases in sympathetic nervous system activity produce disproportionately greater vasoconstriction in the renal vascular bed than occurs in most other vascular beds. Since increased sympathetic nervous system activity has been implicated in the pathogenesis of DOCA-salt hypertension in the rat, we hypothesized that an attenuation of renal sympathetic tone would delay the development of this form of hypertension. Renal denervation was carried out in 5-week-old uninephrectomized male Sprague-Dawley rats 1 week before beginning DOCA-salt treatment. Systolic blood pressures using the tailcuff method in 32 sham-operated rats were significantly (p less than 0.05) elevated above control by Day five (115 +/- 3 vs 128 +/- 3 mm Hg) of DOCA-salt administration and continued to rise, reaching a plateau by Day 21 (192 +/- 5 mm Hg). In contrast, DOCA-salt administration in 32 renal denervated rats did not result in a significant elevation of blood pressure above control until Day 17 (121 +/- 3 vs 135 +/- 3 mm Hg, p less than 0.05). During the first 2 weeks of DOCA-salt treatment, fractional urinary sodium excretion was significantly greater (p less than 0.05) in renal denervated rats than in sham animals. During the third week of DOCA-salt administration, renal denervated rats had a rapid rise in blood pressure and a fall in fractional urinary sodium excretion to the level of the sham-operated animals. Coincident with the development of hypertension was a threefold increase in renal norepinephrine content (5.3 +/- 0.4 ng/g on Day 14 vs 17.7 +/- 3.0 ng/g on Day 24, p less than 0.01), suggesting reinnervation. These data suggest that increased renal sympathetic tone in the DOCA-salt rat facilitates sodium retention and is necessary for the development of the hypertension.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D003404 Creatinine Creatinine Sulfate Salt,Krebiozen,Salt, Creatinine Sulfate,Sulfate Salt, Creatinine
D003900 Desoxycorticosterone A steroid metabolite that is the 11-deoxy derivative of CORTICOSTERONE and the 21-hydroxy derivative of PROGESTERONE 21-Hydroxyprogesterone,Cortexone,Deoxycorticosterone,Desoxycortone,11-Decorticosterone,21-Hydroxy-4-pregnene-3,20-dione,11 Decorticosterone,21 Hydroxy 4 pregnene 3,20 dione,21 Hydroxyprogesterone
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013564 Sympathetic Nervous System The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system. Nervous System, Sympathetic,Nervous Systems, Sympathetic,Sympathetic Nervous Systems,System, Sympathetic Nervous,Systems, Sympathetic Nervous

Related Publications

R E Katholi, and A J Naftilan, and S Oparil
November 2011, American journal of physiology. Heart and circulatory physiology,
R E Katholi, and A J Naftilan, and S Oparil
January 1982, Annals of the New York Academy of Sciences,
R E Katholi, and A J Naftilan, and S Oparil
April 2002, Journal of hypertension,
R E Katholi, and A J Naftilan, and S Oparil
May 2011, American journal of physiology. Heart and circulatory physiology,
R E Katholi, and A J Naftilan, and S Oparil
May 2019, Hypertension (Dallas, Tex. : 1979),
R E Katholi, and A J Naftilan, and S Oparil
January 1978, Clinical and experimental hypertension,
R E Katholi, and A J Naftilan, and S Oparil
June 1984, Japanese circulation journal,
R E Katholi, and A J Naftilan, and S Oparil
January 2018, Frontiers in physiology,
R E Katholi, and A J Naftilan, and S Oparil
May 2002, Autonomic neuroscience : basic & clinical,
R E Katholi, and A J Naftilan, and S Oparil
August 1971, British journal of pharmacology,
Copied contents to your clipboard!