Hepatic blood flow: morphologic aspects and physiologic regulation. 1980

A M Rappaport

The study of the morphology of the hepatic circulation has given evidence that the liver consists of a large vascular delta formed by the confluence of the portal and arterial streams. Their arms, which subdivide the delta into lobar areas, start to run parallel and close to each other when they are still visible to the naked eye. Dwindled down to microscopic size, they become the scaffold of the parenchymal cell masses nestling between the microvessels. The arterioles, as they merge with the sinusoidal and portal channels, assume the role of organizing the microcirculation into units. These units are the vascular core of the structural and functional liver acini. It has now been demonstrated beyond doubt that a PO2 gradient exists in the hepatic vessels and tissues, decreasing from the site of the arteriolar rivulets joining the venous stream toward the site of their common egress via the terminal hepatic venules. The gradient permits the subdivision of the microscopic vascular units into three microcirculatory zones, each of them creating an appropriate microenvironment for specific enzymic and metabolic activity. The microcirculatory shifts in arterial flow from tide to ebb will cause change in the activity of the zones. These are essentially dynamic subdivisions of the metabolic activity in the large liver swamp. Here also start the tiny rivulets forming a green river, the bile stream, that runs in the opposite direction to the portal and hepatic arterial flow. It is to be expected that the quantity and quality of bile carrying important products back to the gastrointestinal area for digestion and absorption of fat are influenced by the tides in portal and arterial flow. All in all, it is evident that vascular morphology is the visual aspect of the dynamic blood flow, thus permitting us to perceive its functional orderliness, and to study the circulatory physiology in the hepatic delta. Means of measurement of hepatic blood flow have been reviewed and its methodological problems have been discussed. It was found that the term "estimated" hepatic blood flow is still justified. Also the relationship between hepatic blood flow and metabolism is not yet clear-cut. The role of the arterial and portal components of the hepatic circulation has been analyzed. There is a reciprocal relationship between arterial and portal volume flow; it is effectuated by the state of constriction or dilation of the mesenteric and hepatic arterioles, both under myogenic control. Portal blood delivers directly to the hepatocyte all water-soluble substances absorbed from the intestines or produced in the intestinal walls. The hepatic artery maintains an appropriate PO2 gradient between the acinar zones and flow of blood against increased tissue resistance; it assures a steady clearance of blood-borne substances, e.g., hormones and endogenous products. Regulation of arterial flow is less neural than neurohumoral; metabolites and bile salts exert additional effects on blood flow...

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008102 Liver Circulation The circulation of BLOOD through the LIVER. Hepatic Circulation,Circulation, Liver,Circulation, Hepatic
D008196 Lymph The interstitial fluid that is in the LYMPHATIC SYSTEM. Lymphs
D008208 Lymphatic System A system of organs and tissues that process and transport immune cells and LYMPH. Lymphatic Systems
D008642 Mesenteric Veins Veins which return blood from the intestines; the inferior mesenteric vein empties into the splenic vein, the superior mesenteric vein joins the splenic vein to form the portal vein. Mesenteric Vein,Vein, Mesenteric,Veins, Mesenteric
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D011168 Portal System A system of vessels in which blood, after passing through one CAPILLARY BED, is conveyed through a second set of capillaries before it returns to the systemic circulation. It pertains especially to the hepatic portal system. Portal Systems,System, Portal,Systems, Portal
D011169 Portal Vein A short thick vein formed by union of the superior mesenteric vein and the splenic vein. Portal Veins,Vein, Portal,Veins, Portal
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D006499 Hepatic Artery A branch of the celiac artery that distributes to the stomach, pancreas, duodenum, liver, gallbladder, and greater omentum. Arteries, Hepatic,Artery, Hepatic,Hepatic Arteries

Related Publications

A M Rappaport
December 1986, Arkhiv anatomii, gistologii i embriologii,
A M Rappaport
January 1996, Der Unfallchirurg,
A M Rappaport
December 1999, Clinical cardiology,
A M Rappaport
April 1964, Surgery, gynecology & obstetrics,
A M Rappaport
December 1954, Texas state journal of medicine,
A M Rappaport
January 1972, Progress in liver diseases,
A M Rappaport
January 1975, Voprosy neirokhirurgii,
A M Rappaport
December 2010, World journal of gastroenterology,
A M Rappaport
September 2020, Scientific reports,
A M Rappaport
June 1990, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
Copied contents to your clipboard!