| D007328 |
Insulin |
A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). |
Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin |
|
| D007651 |
Keto Acids |
Carboxylic acids that contain a KETONE group. |
Oxo Acids,Oxoacids,Acids, Keto,Acids, Oxo |
|
| D007658 |
Ketone Oxidoreductases |
Oxidoreductases that are specific for KETONES. |
Oxidoreductases, Ketone |
|
| D008274 |
Magnesium |
A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION. |
|
|
| D008297 |
Male |
|
Males |
|
| D009097 |
Multienzyme Complexes |
Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. |
Complexes, Multienzyme |
|
| D010084 |
Oxidation-Reduction |
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). |
Redox,Oxidation Reduction |
|
| D011768 |
Pyruvate Dehydrogenase Complex |
A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) |
Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate |
|
| D011773 |
Pyruvates |
Derivatives of PYRUVIC ACID, including its salts and esters. |
|
|
| D002208 |
Caproates |
Derivatives of caproic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a carboxy terminated six carbon aliphatic structure. |
Hexanoates,Caproic Acid Derivatives,Caproic Acids,Hexanoic Acid Derivatives,Hexanoic Acids,Acid Derivatives, Caproic,Acid Derivatives, Hexanoic,Acids, Caproic,Acids, Hexanoic,Derivatives, Caproic Acid,Derivatives, Hexanoic Acid |
|